Skip to main content

Shift of the mean magnetic field values: Effect of scatter due to secular variation and errors

Abstract

Paleomagnetic data are mostly given in the form of field directions (inclinations and declinations) which depend nonlinearly on the model parameters (Gauss coefficients). Because of this nonlinearity, the means of the data are affected not only by the means of the parameters but also by their fluctuations. Defining the mean directions by the Fisher method decreases this effect but does not completely eliminate it. For various mean fields, we evaluate the effect of secular variation on the means of Fisher-averaged directions by the analytical (Taylor expansion to the second order) as well as by the numerical (Monte Carlo) method. It was shown that a significant amount of offset occurs in the field values because of the fluctuation caused by secular variation. In the case of an inclination anomaly, the effect of secular variation as a function of latitude is antisymmetric about the equator, similar to that of the axial octupole term (g 03 ). We also show that the measurement errors do not induce biases in the mean field data, provided that they are random and isotropic.

References

  • Barton, C. E., International Geomagnetic Reference Field: The seventh generation, J. Geomag. Geoelectr,49, 123–148, 1997.

    Article  Google Scholar 

  • Benkova, N. P., N. V. Adam, and T. N. Cherevko, Application of spherical harmonic analysis to magnetic declination data, Geomagn. Aeron., 10, 673 (Engl. Trans. 527–532), 1970 (in Russian).

    Google Scholar 

  • Constable, C. G. and C. L. Johnson, Anisotropic paleosecular variation models: implications for geomagnetic field observables, Phys. Earth Planet. Inter., 115, 35–51, 1999.

    Article  Google Scholar 

  • Constable, C. G. and R. L. Parker, Statistics of the geomagnetic secular variation for the past 5 m.y., J. Geophys. Res., 93, 11569–11581, 1988.

    Article  Google Scholar 

  • Cox, A. V, Latitude dependence of the angular dispersion of the geomagnetic field, Geophys. J. R. astr. Soc, 20, 253–269, 1970.

    Article  Google Scholar 

  • Creer, K. M., D. T. Georgi, and W. Lowrie, On the representation of the Quaternary and late tertiary geomagnetic fields in terms of dipoles and quadrupoles, Geophys. J. R. astr. Soc., 33, 323–345, 1973.

    Article  Google Scholar 

  • Fisher, R. A., Dispersion on a sphere, Proc. R. Soc. Lond., A217, 295–305, 1953.

    Article  Google Scholar 

  • Glatzmaier, G. A. and P. H. Roberts, A three-dimensional self-consistent computer simulation of a geomagnetic field reversal, Nature, 377, 203–209, 1995.

    Article  Google Scholar 

  • Gubbins, D., Geomagnetic field analysis—I. stochastic inversion, Geophys. J. R. astr. Soc., 73, 641–652, 1983.

    Article  Google Scholar 

  • Gubbins, D. and J. Bloxham, Geomagnetic field analysis—III. Magnetic fields on the core-mantle boundary, Geophys. J. R. astr. Soc., 80, 695–713, 1985.

    Article  Google Scholar 

  • Gubbins, D. and P. Kelly, Persistent patterns in the geomagnetic field over the past 2.5 Myr, Nature, 365, 829–832, 1993.

    Article  Google Scholar 

  • Hoffman, K. A., Dipolar reversal states of the geomagnetic field and core-mantle dynamics, Nature, 359, 789–794, 1992.

    Article  Google Scholar 

  • Hulot, G., A. Khokholov, and J.-L. Le Mouël, Uniqueness of mainly dipolar magnetic fields recovered from directional data, Geophys. J. Int., 129, 347–354, 1997.

    Article  Google Scholar 

  • Jackson, D. D., The use of a priori data to resolve non-uniqueness in linear inversion, Geophys. J. R. astr. Soc., 57, 137–157, 1979.

    Article  Google Scholar 

  • Johnson, C. L. and C. G. Constable, The time-averaged geomagnetic field as recorded by lava flows over the past 5 Myr, Geophys. J. Int., 122, 488–519, 1995.

    Google Scholar 

  • Johnson, C. L. and C. G. Constable, The time-averaged geomagnetic field: global and regional biases for 0-5 Ma, Geophys. J. Int., 131, 643–666, 1997.

    Article  Google Scholar 

  • Kelly, P. and D. Gubbins, The geomagnetic field over the past 5 Myr, Geophys. J. Int., 128, 315–330, 1997.

    Article  Google Scholar 

  • Kono, M., Uniqueness problems in their spherical harmonic analysis of the geomagnetic field direction data, J. Geomag. Geoelectr., 28, 11–29, 1976.

    Article  Google Scholar 

  • Kono, M. Paleosecular variation in field directions due to randomly varying Gauss coefficients, J. Geomag. Geoelectr., 49, 615–631, 1997a.

    Article  Google Scholar 

  • Kono, M. Distributions of paleomagnetic directions and poles, Phys. Earth Planet. Inter., 103, 313–327, 1997b.

    Article  Google Scholar 

  • Kono, M. and O. Hiroi, Paleosecular variation of field intensities and dipole moments, Earth Planet. Sci. Lett., 139, 251–262, 1996.

    Article  Google Scholar 

  • Kono, M. and H. Tanaka, Mapping the Gauss coefficients to the pole and the models of paleosecular variation, J. Geomag. Geoelectr., 47, 115–130, 1995.

    Article  Google Scholar 

  • Kono, M., H. Tanaka, and H. Tsunakawa, Spherical harmonic analysis of paleomagnetic data: the case of linear mapping, J. Geophys. Res., 105, 5817–5833, 2000a.

    Article  Google Scholar 

  • Kono, M., A. Sakuraba, and M. Ishida, Dynamo simulation and paleosecular variation models, Phil. Trans. R. Soc. Lond., A358, 1123–1139, 2000b.

    Article  Google Scholar 

  • Langel, R. A., The main field, in Geomagnetism, vol. 1, edited by J. A. Jacobs, pp. 249–512, Academic Press, London, 1987.

    Google Scholar 

  • Langel, R. A. and R. H. Estes, A geomagnetic field spectrum, Geophys. Res. Lett., 9, 250–253, 1982.

    Article  Google Scholar 

  • McElhinny, M. W., P. L. McFadden, and R. T. Merrill, The time-averaged paleomagnetic field 0-5 Ma, J. Geophys. Res., 101, 25007–25027, 1996.

    Article  Google Scholar 

  • McFadden, P. L., R. T. Merrill, and M. W. McElhinny, Dipole/quadrupole family modeling of paleosecular variation, J. Geophys. Res., 93, 11583–11588, 1988.

    Article  Google Scholar 

  • Proctor, M. R. E. and D. Gubbins, Analysis of geomagnetic directional data, Geophys. J. Int., 100, 69–77, 1990.

    Article  Google Scholar 

  • Shure, L., R. L. Parker, and G. E. Backus, Harmonic splines for geomagnetic modelling, Phys. Earth Planet. Inter., 28, 215–229, 1982.

    Article  Google Scholar 

  • Tanaka, H., Circular asymmetry of the paleomagnetic directions observed at low latitude volcanic sites, Earth Planets Space, 51, 1279–1286, 1999.

    Article  Google Scholar 

  • Wilson, R. L., Permanent aspects of the Earth’s non-dipole magnetic field over upper tertiary times, Geophys. J. R. astr. Soc., 19, 417–437, 1970.

    Article  Google Scholar 

  • Wilson, R. L., Dipole offset—The time average palaeomagnetic field over the past 25 million years, Geophys. J. R. astr. Soc., 22, 491–504, 1971.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tadahiro Hatakeyama.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hatakeyama, T., Kono, M. Shift of the mean magnetic field values: Effect of scatter due to secular variation and errors. Earth Planet Sp 53, 31–44 (2001). https://doi.org/10.1186/BF03352360

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352360

Keywords

  • Secular Variation
  • Direction Cosine
  • Paleomagnetic Data
  • Axial Dipole
  • Nonlinear Data