Skip to main content

Modeling of equivalent ionospheric currents from meridian magnetometer chain data

Abstract

In recent years, quantitative analysis of the magnetosphere-ionosphere coupling and electrodynamics of the polar ionosphere received much attention. Though remarkable progress has been made in this field by using a variety of magnetogram inversion techniques in order to infer the global ionospheric current distribution, there is still a need for modeling ionospheric currents locally, over a certain region, for comparison with other geophysical ground-based and satellite observations. This paper presents a simple method for estimating equivalent ionospheric currents using magnetic field observations along a meridian chain of ground-based vector magnetometers. The method can be applied in an automatic fashion to any available magnetometer chain data, for example, from the DMI Greenland west coast chain. We first describe how we separate contributions to the observed geomagnetic variations from external (ionospheric) and internal (induced) sources. We then model the ionospheric electrojet by a sequence of narrow current strips and apply the Biot-Savart law to formulate an inversion problem. Using a regularization technique, we find a stable distribution of the equivalent ionospheric currents crossing the magnetometer chain in eastward and westward direction. Simulation tests and a case study (20 March 1999) are discussed in order to illustrate properties of the solution to the inverse problem and to present a practical tool, which is accessible through the DMI World Wide Web site.

References

  • Amm, O., Ionospheric elementary current systems in spherical coordinates and their application, J. Geomag. Geoelectr., 49, 947–955, 1997.

    Article  Google Scholar 

  • Amm, O. and A. Viljanen, Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary current systems, Earth Planets Space, 51, 431–440, 1999.

    Article  Google Scholar 

  • Baumjohann, W., R. J. Pellinen, H. J. Opgenoorth, and E. Nielsen, Joint two-dimensional observations of ground magnetic and ionospheric electric fields associated with auroral zone currents: current systems associated with the local break-ups, Planet. Space Sci., 29, 431–447, 1981.

    Article  Google Scholar 

  • Boteler, D. H. and R. J. Pirjola, The complex image method for calculating the magnetic and electric fields produced at the surface of the Earth by the auroral electrojet, Geophys. J. Int., 132, 31–40, 1998.

    Article  Google Scholar 

  • Engels, M., Untersuchungen zur elektromagnetischen Induktion in Grönland, 131 pp., Ph.D. Thesis, Georg-August-Universität Göttingen, Cuvillier Verlag, Göttingen, 1997 (in German).

    Google Scholar 

  • Gustafsson, G., N. E. Papitashvili, and V. O. Papitashvili, A revised corrected geomagnetic coordinate system for Epochs 1985 and 1990, J. Atmos. Terr. Phys., 54, 1609–1631, 1992.

    Article  Google Scholar 

  • Kamide, Y, A. D. Richmond, and S. Matsushita, Estimation of ionospheric electric fields, ionospheric currents and field-aligned currents from ground magnetic records, J. Geophys. Res., 86, 801–813, 1981.

    Article  Google Scholar 

  • Kisabeth, J. L. and G. Rostoker, Development of the polar electrojet during polar magnetic substorms, J. Geophys. Res., 76, 6815–6828, 1971.

    Article  Google Scholar 

  • Korobeinikov, V. G., V. G. Petrov, and V. O. Papitashvili, Algorithm for derivation of polar electrojet parameters by the use of meridional chain data, Geomagnetic Research, 21, 41–45, Sovetskoe Radio, Moscow, 1977 (in Russian).

    Google Scholar 

  • Kotikov, A. L., Yu. A. Latov, and O. A. Troshichev, Structure of auroral electrojets by the data from a meridional chain of magnetic stations, Geophysica, 23, 143–154, 1987.

    Google Scholar 

  • Kotikov, A. L., B. D. Bolotynskaya, V. A. Gizler, O. A. Troshichev, A. B. Pashin, and V. R. Tagirov, Structure of auroral zone phenomena from the data of meridional chains of stations: magnetic disturbances in the nighttime auroral zone and auroras, J. Atmos. Terr. Phys., 53, 265–277, 1991.

    Article  Google Scholar 

  • Kuznetsov, B. M., O. A. Troshichev, and V. A. Zhilenkov, A study of the auroral electrojets structure, Geomagnetic Research, 23, 91–98, Sovetskoe Radio, Moscow, 1978 (in Russian).

    Google Scholar 

  • Mareschal, M., On the problem of simulating the Earth’s induction effects in modeling polar magnetic substorms, Rev. Geophys. Space Phys., 14, 403–410, 1976.

    Article  Google Scholar 

  • Mersmann, U., W. Baumjohann, F. Kuppers, and K. Lange, Analysis of an eastward electrojet by means of upward continuation of ground-based magnetometer data, J. Geophys., 45, 281–298, 1979.

    Google Scholar 

  • Olsen, N., A new tool for determining ionospheric currents from magnetic satellite data, Geophys. Res. Lett., 23, 3635–3638, 1996.

    Article  Google Scholar 

  • Papitashvili, V. O. and V. A. Popov, Ionospheric currents in the southern polar cusp as a function of the sign of the azimuthal component of the IMF, Geomagn. Aeron., 22, Engl. Transl., 264–265, 1982.

    Google Scholar 

  • Popov, V. A. and Ya. I. Feldstein, On a new interpretation of “Harang discontinuity”, Geomagn. Aeron., 36, 43–51, 1996 (in Russian).

    Google Scholar 

  • Pudovkin, M. I., Sources of bay-like disturbances, Izv. Acad. Sci., Ser. Geophys., 3, (Trans. Acad. Sci. USSR, Geophysics), 484–489, 1960 (in Russian).

    Google Scholar 

  • Richmond, A. D. and W. Baumjohann, Three-dimensional analysis of magnetometer array data, J. Geophys., 54, 138–156, 1983.

    Google Scholar 

  • Rostoker, G., Magnetospheric and ionospheric currents in the polar cusp and their dependence on the By component of the interplanetary magnetic field, J. Geophys. Res., 85, 4167–4176, 1980.

    Article  Google Scholar 

  • Tikhonov, A. N. and V. Ia. Arsenin, Solution of Ill-Posed Problems, 258 pp., Halsted Press, New York, 1977.

    Google Scholar 

  • Untiedt, J. and W. Baumjohann, Studies of polar current systems using the IMS Scandinavian magnetometer array, Space Sci. Rev., 63, 245–390, 1993.

    Article  Google Scholar 

  • Viljanen, A., O. Amm, and R. Pirjola, Modeling geomagnetically induced currents during different ionospheric conditions, J. Geophys. Res., 104, 28,059–28,071, 1999.

    Article  Google Scholar 

  • Walker, J. K., V. Semenov, and T. L. Hansen, Synoptic models of high latitude magnetic activity and equivalent ionospheric and induced currents, J. Atmos. Terr. Phys., 59, 1435–1452, 1997.

    Article  Google Scholar 

  • Weaver, J. T., On the separation of local geomagnetic fields into external and internal parts, Z. Geophys., 30, 29–36, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Popov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Popov, V.A., Papitashvili, V.O. & Watermann, J.F. Modeling of equivalent ionospheric currents from meridian magnetometer chain data. Earth Planet Sp 53, 129–137 (2001). https://doi.org/10.1186/BF03352370

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352370

Keywords

  • Sheet Current
  • Ionospheric Current
  • Auroral Electrojet
  • Danish Meteorological Institute
  • Spherical Elementary Current System