Skip to main content

Electrostatic particle simulations of the WDL in the auroral plasma including the effects of up-flowing ions

Abstract

An upward beam of hot ions which originates in the ionosphere is commonly observed in and above the region of auroral particle acceleration. Past simulations of the weak double layer (WDL) have only included magnetospheric hot electrons and ionospheric cold ions. We simulated the formation of the WDL numerically and more realistically using a one dimensional electrostatic code. We modeled magnetospheric hot electrons, ionospheric cold ions and hot ionospheric beam ions in the system. The existence of the hot ion beam modifies the characteristics of the WDL, its magnitude of the potential drop and lifetime. We investigated the variation in the character of the WDL for different fractions of the hot ion beam component. The magnitude of the potential jump of the WDL was found to decrease but the lifetime of the WDL increase as this proportion increased. The existence of a critical value of the ratio of the hot beam ions to the cold ions, above which electrons cannot be accelerated effectively and which places an upper limit on the altitude of auroral particle acceleration region has also been shown.

References

  • Alfvén, H. and C.-G. Fälthammar, Cosmical Electrodynamics, Fundamental Principles, pp. 161–167, Oxford Univ. Press, New York, 1963.

    Google Scholar 

  • Berman, R. H., D. J. Tetreault, and T. H. Dupree, Simulation of phase space hole growth and the development of intermittent plasma turbulence, Phys. Fluids, 28, 155–176, 1985.

    Article  Google Scholar 

  • Cattell, C., et al., The association of electrostatic ion cyclotron waves, ion and electron beams and field-aligned currents: FAST observations of an auroral zone crossing near midnight, Geophys. Res. Lett., 25, 2053–2056, 1998.

    Article  Google Scholar 

  • Dupree, T. H., Theory of phase-space density holes, Phys. Fluids, 25, 277–289, 1982.

    Article  Google Scholar 

  • Dupree, T. H., Growth of phase-space density holes, Phys. Fluids, 26, 2460–2481, 1983.

    Article  Google Scholar 

  • Frank, L. A. and K. L. Ackerson, Observations of charged particle precipitation into the auroral zone, J. Geophys. Res., 76, 3612–3643, 1971.

    Article  Google Scholar 

  • Knorr, G. and C. K. Goertz, Existence and stability of strong potential double layers, Astrophys. Space Sci., 31, 209–223, 1974.

    Article  Google Scholar 

  • Koskinen, H. J., et al., On the plasma environment of solitary waves and weak double layers, J. Geophys. Res., 95, 5921–5929, 1990.

    Article  Google Scholar 

  • Mälkki, A., et al., On theories attempting to explain observations of solitary waves and weak double layers in the auroral magnetosphere, Phys. Scr., 39, 787–793, 1989.

    Article  Google Scholar 

  • Montgomery, D. and G. Joyce, Shock-like solutions of the electrostatic Vlasov equation, J. Plasma Physics, 3, 1–11, 1969.

    Article  Google Scholar 

  • Reiff, P. H., et al., Determination of auroral electrostatic potentials using high- and low-altitude particle distributions, J. Geophys. Res., 93, 7441–7465, 1988.

    Article  Google Scholar 

  • Reiff, P. H., et al., On the high- and low-altitude limits of the auroral electric field region, J. Auroral Plasma Dynamics Geophysical Monograph, 80, 143–154, 1993.

    Article  Google Scholar 

  • Sato, T. and H. Okuda, Ion acoustic double layers, Phys. Rev. Lett., 44, 740–743, 1980.

    Article  Google Scholar 

  • Sato, T. and H. Okuda, Numerical simulations on ion accoustic double layers, J. Geophys. Res., 86, 3357–3368, 1981.

    Article  Google Scholar 

  • Schriver, D. and M. Ashour-Abdalla, Self-consistent formation of parallel electric fields in the auroral zone, Geophys. Res. Lett., 20, 475–478, 1993.

    Article  Google Scholar 

  • Shelley, E. G., et al., Satellite observations of an ionospheric acceleration mechanism, Geophys. Res. Lett., 3, 654–656, 1976.

    Article  Google Scholar 

  • Swift, D.W., On the formation of auroral arcs and acceleration of auroral electrons, J. Geophys. Res., 80, 2096–2108, 1975.

    Article  Google Scholar 

  • Temerin, M., et al., Observations of double layers and solitary waves in the auroral plasma, Phys. Rev. Lett., 48, 1175–1179, 1982.

    Article  Google Scholar 

  • Tetreault, D. J., Theory of electric fields in the auroral acceleration region, J. Geophys. Res., 96, 3549–3563, 1991.

    Article  Google Scholar 

  • Yamamoto, T., et al., Meridional structures of electric potentials relevant to premidnight discrete auroras: A case study from Akebono measurements, J. Geophys. Res., 98, 11,135–11,151, 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yajima.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yajima, A., Machida, S. Electrostatic particle simulations of the WDL in the auroral plasma including the effects of up-flowing ions. Earth Planet Sp 53, 139–147 (2001). https://doi.org/10.1186/BF03352371

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352371

Keywords

  • Solitary Wave
  • Potential Jump
  • Tary Wave
  • Auroral Acceleration Region
  • Auroral Plasma