- Article
- Open Access
- Published:
Comparisons of GPS/MET retrieved ionospheric electron density and ground based ionosonde data
Earth, Planets and Space volume 53, pages 193–205 (2001)
Abstract
The Global Positioning System/Meteorology (GPS/MET) mission has been the first experiment to use a low Earth orbiting (LEO) satellite (the MicroLab-1) to receive multi-channel Global Positioning System (GPS) carrier phase signals and demonstrate active limb sounding of the Earth’s atmosphere and ionosphere by radio occultation technique. Under the assumption of spherical symmetry at the locality of the occultation, the dual-band phase data have been processed to yield ray-path bending angle profiles, which have then been used to yield profiles of refractive index via the Abel integral transform. The refractivity profiles can then, in turn, yield profiles of ionospheric electron density and other atmospheric variables such as neutral atmospheric density, pressure, and temperature in the stratosphere and upper troposphere, and water vapor in the lower troposphere with the aid of independent temperature data. To approach a near real-time process, electron density profiles can also be derived by the Abel transform through the computation of total electron content (TEC) assuming straight-line propagation (neglecting bending). In order to assess the accuracy of the GPS/MET ionospheric electron density retrievals, coincidences of ionosonde data with GPS/MET occultations have been examined. The retrieved electron density profiles from GPS/MET TEC observations have been compared with ionogram inversion results derived from digital ionospheric sounders operated by the National Central University (the Chung-Li digisonde; 24.6°N, 121.0°E) and by Utah State University (the Bear-Lake dynasonde; 41.9°N, 111.4°W). A fuzzy classification method for the automatic identification and scaling of ionogram traces has been applied to recorded ionograms, and then bottomside ionospheric electron density profiles are determined from true-height analysis. The comparison results show better agreement for both of the derived electron density profiles and the F2-layer critical frequency ( foF2) at mid-latitude observations than at low-latitude observations. The rms foF2 differences from the GPS/MET retrievals are 0.61 MHz to the Bear-Lake dynasonde measurements and 1.62 MHz to the Chung-Li digisonde measurements.
References
Argo, P. E. and M. Hindman, PC radar—A data acquisition tool, Presonal Engineering and Instrumentation News, 49–56, August 1987.
Bibl, K. and B. Reinisch, The universal digital ionosonde, Radio Sci., 13, 519, 1978.
Born, M. and E. Wolf, Principles of Optics, 808 pp., New York, Pergamon, 1980.
Budden, K. G., The Propagation of Radio Waves, 669 pp., Cambridge University Press, Cambridge, 1985.
Fjeldbo, G. and V. R. Eshleman, Atmosphere of Venus as studied with the Mariner V dual radio frequency occultation experiment, Radio Sci., 4, 879–897, 1969.
Fjeldbo, G., A. J. Kliore, and V. L. Eshleman, The neutral atmosphere of Venus as studies with the Mariner V radio occultation experiments, Astron. J., 76, 123–140, 1971.
Grubb, R. N., The NOAA SEL HF radar system (ionospheric sounder), NOAA Tech. Memo. ERL SEL-55, Space Environ. Lab., Boulder, 1979.
Gulyaeva, T. L., W. Becker, L. F. McNamara, A. K. Paul, J. E. Titheridge, and J. W. Wright, Analysis of numerical ionograms: the starting problem, Ionospheric Prediction Service Series X Reports, IPS-X7, Aust. Gov. Dep. of Sci. and Technol., Ionos. Predict. Serv., Sydney, Australia, 1978.
Hajj, G. A. and L. J. Romans, Ionospheric electron density profiles obtained with the Global Positioning System: Results from the GPS/MET experiment, Radio Sci., 33(1), 175–190, 1998.
Hajj, G. A., L. C. Lee, X. Pi, L. J. Romans, W. S. Schreiner, P. R. Straus, and C. Wang, COSMIC GPS ionospheric sensing and space weather, Terrestial, Atmospheric and Oceanic Sciences, 11(1), 235–272, 2000.
Kliore, A. J., D. L. Cain, G. S. Levy, V. R. Eshlemann, G. Fjeldbo, and F. D. Drake, Occultation experiments: Results of the first direct measurements of Mars’ atmosphere and ionosphere, Science, 149, 1243–1248, 1965.
Kursinski, E. R., G. A. Hajj, J. T. Schofield, R. P. Linfield, and K. R. Hardy, Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System, J. Geophys. Res., 102, 23429–23465, 1997.
Lindal, G. F., H. B. Hotz, D. N. Sweetnam, Z. Shippony, J. P. Brenkle, G. V. Hartsell, R. T. Spear, and W. H. Michael, Viking radio occultation measurements of the atmosphere and topography of Mars: Data acquires during 1 Martian year of tracking, J. Geophys. Res., 84, 8443–8456, 1979.
Lindal, G. F. and Coauthors, The atmosphere of Jupiter: An analysis of the Voyager radio occultation measurements, J. Geophys. Res., 86, 8721–8727, 1981.
Lindal, G. F. and Coauthors, The atmosphere of Uranus: results of radio occultation measurements with Voyager 2, J. Geophys. Res., 92, 14987–15001, 1987.
Martyn, D. F., The normal F region of the ionosphere, Proc. IRE N. Y., 47, 147, 1959.
McNamara, L. F. and J. E. Titheridge, Numerical ionograms for comparing methods of N(h) analysis, IPS Series R Reports X-5, 1977.
Paul, A. K. and D. L. Mackison, Scaling of the F-layer critical frequency from digital ionograms applied to observations during the solar eclipse on 26 February 1979, J. Atmos. Terr. Phys., 43(3), 221–223, 1981.
Rastogi, R. G., The diurnal development of the anomalous equatorial belt in the F2 region of the ionosphere, J. Geophys. Res., 64, 727, 1959.
Reinisch, B.W., New techniques in ground-based ionospheric sounding and studies, Radio Sci., 21, 331, 1986.
Rocken, C., R. Anthes, M. Exner, D. Hunt, S. Sokolovskiy, R. Ware, M. Gorbunov, W. Schreiner, D. Feng, B. Herman, Y. Kuo, and X. Zou, Analysis and validation of GPS/MET data in the neutral atmosphere, J. Geophys. Res., 102(D25), 29849–29866, 1997.
Schreiner, W. S., S. V. Sokolovskiy, C. Rocken, and D. C. Hunt, Analysis and validation of GPS/MET radio occultation data in the ionosphere, Radio Sci., 34(4), 949–966, 1999.
Titheridge, J. E., Ionogram analysis with the generalised program POLAN, World Data Center A for Solar-Terrestrial Physics, Report UAG-93,1985.
Titheridge, J. E., Starting models for the real height analysis of ionograms, J. Atmos. Terr. Phys., 48, 435–446, 1986.
Titheridge, J. E., The real height analysis of ionograms: A generalized formulation, Radio Sci., 23, 831–849, 1988.
Tricomi, F. G., Integral Equations, 238 pp., Dover, Mineola, N. Y., 1985.
Tsai, L.-C., F. T. Berkey, and G. S. Stiles, The true-height analysis of ionograms using simplified numerical procedures, Radio Sci., 30(4), 949–959, 1995.
Tsai, L.-C. and F. T. Berkey, Ionogram analysis using fuzzy segmentation and connectedness techniques, Radio Sci., 35(5), 1173–1186, 2000.
Ware, R. and Coauthors, GPS sounding of the atmosphere from low Earth orbit: preliminary results, Bulletin of the American Met. Soc., 77, 19–40, 1996.
Wright, J. W. and M. L. V. Pitteway, Real-time data acquisition and interpretation capabilities of the Dynasonde, 1, Data acquisition and real-time display, Radio Sci., 14(5), 815–825, 1979.
Wu, J. T., Elimination of clock errors in a GPS based tracking system, paper AIAA-84-2052, AIAA/AAS Astrodynamics Conference, Seattle, WA, August, 1984.
Zou, X. Y., H. Kuo, and Y.-R. Guo, Assimilation of atmospheric radio refractivity using a nonhydrostatic mesoscale model, Mon. Wea. Rev., 123, 2229–2249, 1995.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tsai, L.C., Tsai, W.H., Schreiner, W.S. et al. Comparisons of GPS/MET retrieved ionospheric electron density and ground based ionosonde data. Earth Planet Sp 53, 193–205 (2001). https://doi.org/10.1186/BF03352376
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1186/BF03352376
Keywords
- Global Position System
- Total Electron Content
- Radio Occultation
- Global Position System Signal
- Ionospheric Electron Density