Skip to main content

Volume 53 Supplement 4

Special Issue: Great Subduction Zone Earthquakes

  • Article
  • Published:

Three-dimensional viscoelastic interseismic deformation model for the Cascadia subduction zone

Abstract

Contemporary deformation of the Cascadia forearc consists of an elastic interseismic strain build-up as part of the subduction earthquake deformation “cycle” anda secular deformation primarily in the form ofarc-parallel translation and clockwise rotationofforearc blocks. Athree-dimensional (3-D) elastic dislocation model, constrainedby vertical deformation data, was developed previously to study the interseismic deformation. In this study, we develop a 3-D viscoelastic finite element model for the Cascadia subduction zone to study the temporal and spatial variations of interseismic deformation, and we compare the model results primarily with horizontal geodetic deformation observations. The model has an elastic lithosphere/slab and a viscoelastic mantle which has a viscosity of 1019 Pa s as constrained by recent postglacial rebound analyses. For comparison, we adopt a seismogenic zone geometry that was used in the previous elastic dislocation model, and we test the effects of different estimates of relative plate motion on the model predictions. Interseismic deformation is simulated by assigning a backslip rate to the locked zone of the subduction fault, preceded by an earthquake rupture of the same zone. Based on preliminary model results, we draw the following conclusions: (1) The deformation rate decreases through the interseismic period. A seaward motion is predicted for inland sites early in the interseismic period, an effect of postseismic creep of the mantle. (2) Model strain rates 300 years after the earthquake are consistent with the observed values, regardless of the plate motion models used. The horizontal velocities in northern Cascadia decrease landward at a slower rate than predicted by the elastic dislocation model, providing a better fit to observations. (3) Oblique subduction causes strain partitioning. As a result, the direction of local maximum contraction is much less oblique than plate convergence. The northerly direction of the GPS velocities in southern Cascadia represent a northward translation of the forearc. The secular deformation of the forearc may be partially accommodated through earthquake deformation cycles, but it may be better modeled as a process independent of the earthquake cycle.

References

  • Atwater, B. F. and E. Hemphill-Haley, Recurrence intervals for great earthquakes of the past 3500 years at northeastern Willapa Bay, Washington, U.S. Geological Survey Professional Paper, 1576, 108 pp., 1997.

    Google Scholar 

  • Axelsson, O., Iterative Solution Methods, 654 pp., Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  • Blackwell, D. D., J. L. Steele, and S. Kelley, Heat flow in the State of Washington and thermal conditions in the Cascade Range, J. Geophys. Res., 95, 19,495–19,516, 1990.

    Article  Google Scholar 

  • Cohen, S. C., Evaluation of the importance of model features for cyclic deformation due to dip-slip faulting, Geophys. J. Int., 119, 831–841, 1994.

    Article  Google Scholar 

  • DeMets, C. and T. H. Dixon, New kinematic models for Pacific-North America motion from 3 Ma to present, I: Evidence for steady motion and biases in the NUVEL-1A model, Geophys. Res. Lett., 26, 1921–1924, 1999.

    Article  Google Scholar 

  • DeMets, C., R. G. Gordon, D. F. Argus, and S. Stein, Current plate motions, Geophys. J. Int., 101, 425–478, 1990.

    Article  Google Scholar 

  • DeMets, C., R. G. Gordon, D. F. Argus, and S. Stein, Effects of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophys. Res. Lett., 21, 2191–2194, 1994.

    Article  Google Scholar 

  • Dmowska, R. and L. C. Lovison, Intermediate-term seismic precursors for some coupled subduction zones, Pure Appl. Geophys., 126, 643–664, 1988.

    Article  Google Scholar 

  • Douglass, J. J. and iB. A. Buffett, The stress state implied by dislocation models of subduction deformation, Geophys. Res. Lett., 22, 3115–3118, 1995.

    Article  Google Scholar 

  • Dragert, H., Recent horizontal strain accumulation on Vancouver Island, British Columbia (abstract), Eos Trans. AGU, 72, Fall meeting suppl., 314, 1991.

    Google Scholar 

  • Dragert, H. and M. Lisowski, Crustal deformation measurements on Vancouver Island, British Columbia: 1976 to 1988, in Global and Regional Geodynamics, edited by P. Vyskocil, C. Reigber, and P. A. Cross, 349 pp., Springer-Verlag, New York, 1990.

    Google Scholar 

  • Dragert, H., R. D. Hyndman, G. C. Rogers, and K. Wang, Current deformation and the width of the seismogenic zone of the northern Cascadia subduction thrust, J. Geophys. Res., 99, 653–668, 1994.

    Article  Google Scholar 

  • Dragert, H., X. Chen, and J. Kouba, GPS monitoring of crustal strain in Southwest British Columbia with the Western Canada Deformation Array, Geomatica, 49, 301–313, 1995.

    Google Scholar 

  • Flück, P., R. D. Hyndman, and K. Wang, Three-dimensional dislocation model for great earthquakes of the Cascadia subduction zone, J. Geophys. Res., 102, 20,539–20,550, 1997.

    Article  Google Scholar 

  • Harris, R. N. and D. S. Chapman, A comparison of mechanical thickness estimates from trough and seamount loading in the southeastern Gulf of Alaska, J. Geophys. Res., 99, 9297–9317, 1994.

    Article  Google Scholar 

  • Henton, J. A., GPS Studies of Crustal Deformation in the Northern Cascadia Subduction Zone, Ph.D. thesis, University of Victoria, 169 pp., British Columbia, 2000.

  • Henton, J. A., H. Dragert, R. D. Hyndman, and K. Wang, Geogetic monitoring of crustal deformation and strain on Vancouver Island (abstract), Eos Trans. AGU, 80, Fall meeting suppl, F276, 1999.

    Google Scholar 

  • Hyndman, R. D. and K. Wang, Thermal constraints on the zone of major thrust earthquake failure, The Cascadia subduction zone, J. Geophys. Res., 98, 2039–2060, 1993.

    Article  Google Scholar 

  • Hyndman, R. D. and K. Wang, Current deformation and thermal constraints on the zone of potential great earthquakes on the Cascadia subduction thrust, J. Geophys. Res., 100, 22,133–22,154, 1995.

    Article  Google Scholar 

  • James, T. S., J. J. Clague, K. Wang, and I. Hutchinson, Postglacial rebound at the northern Cascadia subduction zone, Quat. Sci. Rev., 19, 1527–1541, 2000.

    Article  Google Scholar 

  • Khazaradze, G., A. Qamar, and H. Dragert, Tectonic deformation in western Washington from continuous GPS measurements, Geophys. Res. Lett., 26, 3153–3156, 1999.

    Article  Google Scholar 

  • Lewis, T., Heat flux in the Canadian Cordillera, in Neotectonics of North America, edited by D. B. Slemmons, E. R. Engdahl, M. D. Zoback, and D. D. Blackwell, 498 pp., Geological Society of America, Boulder, Colorado, 1991.

    Google Scholar 

  • Liang, G. P., Finite element program generator and finite element language, in Reliability and Robustness of Engineering Software II, edited by C. A. Brebbia and A. J. Ferrante, 385 pp., Computational Mechanics Publications, London, 1991.

    Google Scholar 

  • McCaffrey, R., M. D. Long, C. Goldfinger, P. C. Zwick, J. L. Nabelek, C. K. Johnson, and C. Smith, Rotation and plate coupling along the southern Cascadia subduction zone, Geophys. Res. Lett., 27, 3117–3120, 2000.

    Article  Google Scholar 

  • Melosh, H. J. and A. Raefsky, A simple and efficient method for introducing faults intofinite element computations, Bull. Seismol. Soc. Am., 71, 1391–1400, 1981.

    Google Scholar 

  • Miller, M. M., D. J. Johnson, C. M. Rubin, H. Dragert, K. Wang, A. Qamar, and C. Goldfinger, GPS-determination of along-strike variation in Cascadia margin kinematics: Implications for relative plate motion, subduction zone coupling, and permanent deformation, Tectonics, 2001 (in press).

  • Miyashita, K., A model of plate convergence in Southwest Japan, inferred from levelling data associated with the 1946 Nankaido earthquake, J. Phys. Earth, 35, 449–467, 1987.

    Article  Google Scholar 

  • Murray, M. H. and M. Lisowski, Strain accumulation along the Cascadia subduction zone, Geophys. Res. Lett., 27, 3631–3634, 2000.

    Article  Google Scholar 

  • Peacock, S. M., Fluid processes in subduction zones, Science, 248, 329–337, 1990.

    Article  Google Scholar 

  • Peltier, W. R., The impulse response of a Maxwell Earth, Rev. Geophys. Space Phys., 12, 649–668, 1974.

  • Pezzopane, S. K. and R. J. Weldon, II, Tectonic role of active faulting in central Oregon, Tectonics, 12, 1140–1169, 1993.

    Article  Google Scholar 

  • Riddihough, R., Recent movements of the Juan de Fuca plate system, J. Geophys. Res., 89, 6980–6994, 1984.

    Article  Google Scholar 

  • Satake, K., K. Shimazaki, Y. Tsuji, and K. Ueda, Time and size of a giant earthquakeinCascadia inferred from Japanese tsunami recordsofJanuary 1700, Nature, 378, 246–249, 1996.

    Article  Google Scholar 

  • Savage, J. C., A dislocation model of strain accumulation and release at a subduction zone, J. Geophys. Res., 88, 4984–4996, 1983.

    Article  Google Scholar 

  • Savage, J. C., Comment on “The stress state implied by dislocation models of subduction deformation” by J. J. Douglass and B. A. Buffett, Geophys. Res. Lett., 23, 2709–2710, 1996.

    Article  Google Scholar 

  • Savage, J. C., M. Lisowski, and W. H. Prescott, Strain accumulation in western Washington, J. Geophys. Res., 96, 14,493–14,507, 1991.

    Article  Google Scholar 

  • Savage, J. C., J. L. Svarc, W. H. Prescott, and M. H. Murray, Deformation across the forearc of the Cascadia subduction zone at Cape Blanco, Oregon, J. Geophys. Res., 105, 3095–3120, 2000.

    Article  Google Scholar 

  • Stuart, W. D., Forecast model for great earthquakes at the Nankai Trough subduction zone, Pure Appl. Geophys., 126, 619–641, 1988.

    Article  Google Scholar 

  • Taylor, M. A., G. Zheng, J. R. Rice, W. D. Stuart, and R. Dmowska, Cyclic stressing and seismicityatstrongly coupled subductionzones, J. Geophys. Res., 101, 8363–8381, 1996.

    Article  Google Scholar 

  • Thatcher, W., The earthquake deformation cycle at the Nankai Trough, Southwest Japan, J. Geophys. Res., 89, 3087–3101, 1984.

    Article  Google Scholar 

  • Thatcher, W. and J. B. Rundle, A viscoelastic coupling model for the cyclic deformation due to periodically repeated earth quakes at subduction zones, J. Geophys. Res., 89, 7631–7640, 1984.

    Article  Google Scholar 

  • Wang, K., Simplified analysis of horizontal stresses in a buttressed forearc sliver at an oblique subduction zone, Geophys. Res. Lett., 23, 2021–2024, 1996.

    Article  Google Scholar 

  • Wang, K., Stress-strain “paradox”, plate coupling, and forearc seismicity at the Cascadia and Nankai subduction zones, Tectonophys., 319, 321–338, 2000.

    Article  Google Scholar 

  • Wang, K. and J. He, Mechanics of low-stress forearcs: Nankai and Cascadia, J. Geophys. Res., 104, 15,191–15,205, 1999.

    Article  Google Scholar 

  • Wang, K. and K. Suyehiro, How does plate coupling affect crustal stresses in Northeast and Southwest Japan?, Geophys. Res. Lett., 26, 2307–2310, 1999.

    Article  Google Scholar 

  • Wang, K., H. Dragert, and H. J. Melosh, Finite element study of uplift and strain across Vancouver Island, Can. J. Earth Sci., 31, 1510–1522, 1994.

    Article  Google Scholar 

  • Wang, K., T. Mulder, G. C. Rogers, and R. D. Hyndman, Case for very low coupling stress on the Cascadia subduction fault, J. Geophys. Res., 100, 12,907–12,918, 1995.

    Article  Google Scholar 

  • Wells, R. E., C. S. Weaver, and R. J. Blakely, Forearc migration in Cascadia and its neotectonic significance, Geology, 26, 759–762, 1998.

    Article  Google Scholar 

  • Wilson, D. S., Confidence intervals for motion and deformation of the Juan de Fuca plate, J. Geophys. Res., 98, 16,053–16,071, 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., He, J., Dragert, H. et al. Three-dimensional viscoelastic interseismic deformation model for the Cascadia subduction zone. Earth Planet Sp 53, 295–306 (2001). https://doi.org/10.1186/BF03352386

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352386

Keywords