Skip to main content

Advertisement

BIFROST project: 3-D crustal deformation rates derived from GPS confirm postglacial rebound in Fennoscandia

Article metrics

Abstract

Since autumn 1993 the BIFROST project has provided daily GPS solutions of geodetic positions from a network of more than 40 stations covering a large area of the Baltic shield. This area is expected to show large vertical motion due to glacial isostatic rebound following the deglaciation at the end of the Pleistocene. This paper will discuss the inference of three-dimensional rates of crustal motion at the GPS stations with respect to (1) a plate-fixed average for the horizontal components; (2) a geocentric reference in order to infer absolute changes of sea level from vertical crustal motion and models of geoidal rebound. We show that the horizontal strain rate pattern is largely dominated by unilateral extension and not exhibiting horizontal shear to an important extent. In regard to the vertical motion a crucial issue is the stability of the geocentre in the GPS frame. We show results from an Empirical Orthogonal Function analysis that attenuates regionally correlated noise. In all components our observations suggest reasonably close agreement with forward computions on the basis of postglacial isostatic adjustment. A dominant tectonic signal would lead to a certain fraction of the batch of baselines to exhibit shortening. A tectonic process leading to a similar pattern of horizontal motion as expected from postglacial rebound can safely be dismissed in the context of the currently accepted plate tectonic setting. Thus, our baseline rate comparison will be a critical first order test of the prevailing style of deformation.

References

  1. Ahjos, T. and M. Uski, Earthquakes in northern Europe in 1375–1989, Tectonophys., 207, 1–23, 1992.

  2. Anderson, D. L. and A. Dziewonski, Preliminary reference Earth model, Phys. Earth. Planet. Int., 25, 297–356, 1981.

  3. Argus, D., Postglacial rebound in VLBI geodesy: on establishing a vertical reference, Geophys. Res. Lett., 23, 973–976, 1996.

  4. Argus, D., W. R. Peltier, and M. M. Watkins, Glacial isostatic adjustment observed using very long baseline interferometry and satellite laser ranging geodesy, J. Geophys. Res., 104, 29,077–29,093, 1999.

  5. Arvidsson, R. and O. Kulhanek, Seismodynamics of Sweden deduced from earthquake focal mechanisms, Geophys. J. Int., 116, 377–392, 1994.

  6. Bennett, R. A., J. L. Davis, and B. P. Wernicke, Present-day pattern of Cordilleran deformation in the western United States, Geology, 27, 371–374, 1999.

  7. BIFROST Project, R. A. Bennett, T. R. Carlsson, T. M. Carlsson, R. Chen, J. L. Davis, M. Ekman, G. Elgered, P. Elosegui, G. Hedling, R. T. K. Jaldehag, P. O. J. Jarlemark, J. M. Johansson, B. Jonsson, J. Kakkuri, H. Koivula, G. A. Milne, J. X. Mitrovica, B. I. Nilsson, M. Ollikainen, M. Paunonen, M. Poutanen, R. N. Pysklywec, B. O. Rönnäng, H.-G. Scherneck, I. I. Shapiro, and M. Vermeer, GPS measurements to constrain geodynamic processes in Fennoscandia, EOS Trans. AGU, 77, 337, 339, 1996.

  8. Boucher, C., Z. Altamimi, M. Feissel, and P. Sillard, Results and Analysis of the ITRF94, IERS Technical Note 20, Observatoire de Paris, 157 pp., 1996.

  9. Brereton, R. and B. Müller, European stress: contributions from borehole breakouts, Philos. Trans. R. Soc. London, Ser. A, 337, 165–179, 1991.

  10. Campbell, J. and A. Nothnagel, European VLBI for crustal dynamics, J. Geodynamics, 30, 321–326, 2000.

  11. Carter, W. E., (ed.), Report of the Surrey Workshop of the IAPSO Tide Gauge Bench Mark Fixing Committee Dec. 1993, NOAA Technical Report, WHOI-89-31, 44 pp., 1994.

  12. Chen, J. L., C. R. Wilson, R. J. Eanes, and R. S. Nerem, Mass variations in the earth system and geocenter motions, in IERS Analysis Campaign to Investigate Motions of the Geocenter, edited by J. Ray, pp. 29–38, IERS Technical Note 25, Observatoire de Paris, 1999.

  13. Davis, J. L., J. X. Mitrovica, H.-G. Scherneck, and H. Han, Investigations of Fennoscandian glacial isostatic adjustment using modern sea level records, J. Geophys. Res., 104, 2733–2747, 1999.

  14. DeMets, C., R. G. Gordon, D. F. Argus, and S. Stein, Effect of recent revisions to the geomagnetic reversal timescale on estimates of current plate motions, Geophys. Res. Lett., 21, 2191–2194, 1994.

  15. Dong, D., J. O. Dickey, Y. Chao, and M. K. Cheng, Geocenter variations caused by mass redistribution of surface geophysical processes, in IERS Analysis Campaign to Investigate Motions of the Geocenter, edited by J. Ray, pp. 47–55, IERS Technical Note 25, Observatoire de Paris, 1999.

  16. Douglas, B. C., Global sea level rise, J. Geophys. Res., 96, 6981–6992, 1991.

  17. Douglas, B. C., Global sea level acceleration, J. Geophys. Res., 97, 12,699–12,706, 1992.

  18. Ekman, M., The world’s longest continued series of sea level observations, Pure Appl. Geophys., 127, 73–77, 1988.

  19. Ekman, M., A consistent map of the postglacial uplift of Fennoscandia, Terra Nova, 8, 158–165, 1996.

  20. Gregersen, S., Crustal stress regime in Fennoscandia from focal mechanisms, J. Geophys. Res., 97, 11,821–11,827, 1992.

  21. Grünthal, G., and the GSHAP Region 3 Working Group, Seismic Hazard Assessment for Central, North and Northwest Europe: GSHAP Region 3, Annali di Geofisica, 42, 999–1011, 1999.

  22. Haas, R., E. Gueguen, H.-G. Scherneck, A. Nothnagel, and J. Campbell, Crustal motion results derived from observations in the European Geodetic VLBI network, Earth Planets Space, 52, 759–764, 2000.

  23. Heflin, M. and M. Watkins, Geocenter estimates from the Global Positioning system, in IERS Analysis Campaign to Investigate Motions of the Geocenter, edited by J. Ray, pp. 55–70, IERS Technical Note 25, Observatoire de Paris, 1999.

  24. James, T. S. and A. Lambert, A comparison of VLBI data with the ICE-3G glacial rebound model, Geophys. Res. Lett., 20, 871–874, 1993.

  25. James, T. S. and W. J. Morgan, Horizontal motions due to post-glacial rebound, Geophys. Res. Lett., 17, 957–960, 1990.

  26. Johansson, J. M., J. L. Davis, H.-G. Scherneck, G. A. Milne, M. Vermeer, J. X. Mitrovica, R. A. Bennett, G. Elgered, P. Elósegui, H. Koivula, M. Poutanen, B. O. Rönnäng, and I. I. Shapiro, Continuous GPS measurements of postglacial adjustment in Fennoscandia, 1. Geodetic Results, J. Geophys. Res., 2001 (in press).

  27. Kahle, H.-G., M. Cocard, Y. Peter, A. Geiger, R. Reilinger, S. McClusky, R. King, A. Barka, and G. Veis, The GPS strain rate field in the Aegean Sea and western Anatolia, Geophys. Res. Lett., 26, 2513–2516, 1999.

  28. Kakkuri, J. and R. Chen, On horizontal crustal strain in Finland, Bull. Géodesique, 66, 12–20, 1992.

  29. Kijko, A., E. Skordas, R. Wählstrom, and P. Mäntyniemi, Maximum likelihood estimation of seismic hazard for Sweden, Natural Hazards, 7, 41–57, 1993.

  30. Lambeck, K., C. Smither, and M. Ekman, Tests of glacial rebound models for Fennoscandinavia based on instrumental sea and lake level records, Geophys. J. Int., 135, 375–387, 1998.

  31. Milne, G. A., J. X. Mitrovica, and J. L. Davis, Near-field hydro-isostasy: The implementation of a revised sea-level equation, Geophys. J. Int., 139, 464–482, 1999.

  32. Milne, G. A., J. L. Davis, J. X. Mitrovica, H.-G. Scherneck, J. M. Johansson, and M. Vermeer, Space-based measurements provide insight to the classic problem of Fennoscandian uplift, Science, 291, 2381–2385, 2001.

  33. Mitrovica, J. X. and W. R. Peltier, On post-glacial geoid relaxation over the equatorial oceans, J. Geophys. Res., 96, 20,053-20,071, 1991.

  34. Mitrovica, J. X., J. L. Davis, and I. I. Shapiro, Constraining proposed combinations of ice history and earth rheology using VLBI determined baseline length rates in North America, Geophys. Res. Lett., 20, 2387–2390, 1993.

  35. Mitrovica, J. X., J. L. Davis, and I. I. Shapiro, A spectral formalism for computing three-dimensional deformations due to surface loads, 1. Theory, J. Geophys. Res., 99, 7075–7101, 1994a.

  36. Mitrovica, J. X., J. L. Davis, and I. I. Shapiro, A spectral formalism for computing three-dimensional deformations due to surface loads, 2. Present-day glacial isostatic adjustment, J. Geophys. Res., 99, 7075–7101, 1994b.

  37. Muir-Wood, R., The Scandinavian earthquakes of 22 December 1759 and 31 August 1819, Disasters, 12, 223–236, 1988.

  38. Müller, B., M. L. Zoback, K. Fuchs, L. Mastin, S. Gregersen, N. Pavoni, O. Stephansson, and C. Ljunggren, Regional Patterns of tectonic stress in Europe, J. Geophys. Res., 97, 11,783–11,803, 1992.

  39. Pan, M. and L. E. Sjöberg, Estimating present-day postglacial rebound and horizontal movements in Fennoscandia by repeated GPS campaigns in 1993 and 1997, Geophys. Res. Lett., 26, 771–774, 1999.

  40. Pan, M., L. E. Sjöberg, C. J. Talbot, and E. Asenjo, GPS measurements of crustal deformation in Skåne, Sweden, between 1989 and 1996, GFF, 121, 67–72, 1999.

  41. Scherneck, H.-G., J. M. Johansson, J. X. Mitrovica, and J. L. Davis, The BIFROST project: GPS Determined 3-D displacement rates in Fennoscandia from 800 days of continuous observations in the SWE-POS network, Tectonophys., 294, 305–322, 1998.

  42. Scherneck, H.-G., G. A. Milne, J. M. Johansson, J. L. Davis, J. X. Mitrovica, and M. Vermeer, BIFROST project: 3-D crustal motions inferred from 1600 days of continuous GPS observations provide new constraints on Fennoscandian Rebound, EOS, Trans. AGU, 80 suppl., F274, 1999.

  43. Skordas, E. and O. Kulhánek, Spatial and temporal variations of Fennoscandian seismicity, Geophys. J. Int., 111, 577–588, 1992.

  44. Slunga, R. S., The Baltic Shield earthquakes, Tectonophys., 189, 323–331, 1991.

  45. Steinberger, B. M., H. Schmeling, and G. Marquart, Large-scale lithospheric stress field induced by global mantle circulation, Earth Planet. Sci. Lett., 186, 75–91, 2001.

  46. Talbot, C. J. and R. Slunga, Patterns of active shear in Fennoscandia, in Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound, edited by S. Gregersen and P. W. Basham, pp. 441–466, Kluwer, Dordrecht, 1989.

  47. Tushingham, A. M. and W. R. Peltier, ICE-3G: A new global model of late pleistocene deglaciation based upon geophysical predictions of postglacial relative sea level change, J. Geophys. Res., 96, 4497–4523, 1991.

  48. Wdowinski, S., Y. Bock, J. Zhang, P. Fang, and J. Genrich, Southern California permanent geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake, J. Geophys. Res., 102, 18,057–18,070, 1997.

  49. Webb, F. H. and J. F. Zumberge, An introduction to GIPSY/OASIS-II precision software for the analysis of data from the Global Positioning System, JPL Publ. No. D-11088, Jet Propulsion Laboratory, Pasadena, Cal., 1993.

  50. Wessel, P. and W. H. F. Smith, New version of the Generic Mapping Tools released, EOS Trans. AGU, 76, 329, 1995.

  51. Wieczerkowski, K., J. X. Mitrovica, and D. Wolf, A revised relaxation time spectrum for Fennoscandia, Geophys. J. Int., 139, 68–86, 1999.

  52. Zhang, J., Y. Bock, H. Johnson, P. Fang, S. Williams, J. Genrich, S. Wdowinski, and J. Behr, Southern California permanent GPS geodetic array: error analysis of daily position estimates and site velocities, J. Geophys. Res., 102, 18,035–18,055, 1997.

Download references

Author information

Correspondence to Hans-Georg Scherneck.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scherneck, H., Johansson, J.M., Vermeer, M. et al. BIFROST project: 3-D crustal deformation rates derived from GPS confirm postglacial rebound in Fennoscandia. Earth Planet Sp 53, 703–708 (2001) doi:10.1186/BF03352398

Download citation

Keywords

  • Tide Gauge
  • Satellite Laser Range
  • Baseline Length
  • Empirical Orthogonal Function Analysis
  • Glacial Isostatic Adjustment