Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Numerical simulation for the prediction of the plate motions: Effects of lateral viscosity variations in the lithosphere

Abstract

A numerical simulation of Newtonian viscous flow without inertia terms in a 3-D spherical shell driven by the negative buoyancy due to the slabs has been conducted to understand the effects of weak plate margins on the plate motions. Density loads are inferred from the seismicity and the reconstruction of the subduction history. The toroidal energy of plate motion comparable to the poloidal energy appears, when γ (ratio of the viscosity at margins to that of interiors) becomes O(0.01). For the whole mantle density model, all the plates move too fast relative to the Pacific plate. The direction of major plate motions is generally improved by the inclusion of weak plate boundaries. The density loads in the upper mantle appear to explain the overall plate motions, although some of the plate motions may require hidden and/or deeper density anomalies to be consistent with the observations. As γ decreases, the geoid anomalies associated with the upper mantle slabs change their signs. This reversal affects the long-wavelength components of the geoid anomalies. A considerable part of the horizontal stress field shows a horizontal extension suggesting that another type of density anomalies is necessary to explain the general compressional field of the real Earth.

References

  1. Argus, D. F. and R. G. Gordon, No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1, Geophys. Res. Lett., 18, 2039–2042, 1991.

    Article  Google Scholar 

  2. Bai, W., C. Vigny, Y. Ricard, and C. Froidevaux, On the origin of deviatoric stresses in the lithosphere, J. Geophys. Res., 97, 11729–11737, 1992.

    Article  Google Scholar 

  3. Christensen, U. and H. Harder, 3-D convection with variable viscosity, Geophys. J. Int., 104, 213–226, 1991.

    Article  Google Scholar 

  4. Corrieu, V., C. Thoraval, and Y. Ricard, Mantle dynamics and geoid Green functions, Geophys. J. Int., 120, 516–523, 1995.

    Article  Google Scholar 

  5. Forsyth, D. W. and S. Uyeda, On the relative importance of the driving force of plate motion, Geophys. J. R. Astron. Soc., 43, 163–200, 1975.

    Article  Google Scholar 

  6. Gordon, R. J. and D. M. Jurdy, Cenozoic global plate motions, J. Geophys. Res., 91, 12389–12406, 1986.

    Article  Google Scholar 

  7. Gurnis, M., J. X. Mitrovica, J. Ritsema, and H.-J. van Heijst, Constraining mantle density structure using geological evidence of surface uplift rates: The case of the African superplume, Geochemist. Geophys. Geosyst., 1, 1999GC000035, 2000.

    Article  Google Scholar 

  8. Hager, B. H., Oceanic plate motions driven by lithospheric thickening and subducted slabs, Nature, 276, 541–545, 1978.

    Article  Google Scholar 

  9. Hager, B. H., Subducted slabs and the geoid: Constraints on mantle rheology and flow, J. Geophys. Res., 89, 6003–6015, 1984.

    Article  Google Scholar 

  10. Hager, B. H. and R. W. Clayton, Constraints on the structure of mantle convection using seismic observations, flow models and the geoid, in Mantle Convection: Plate Tectonics and Global Dynamics, edited by W. R. Peltier, The fluid mechanics of astrophysics and geophysics 4, pp. 657–763, Gordon and Breach Science Publishers, New York, 1989.

    Google Scholar 

  11. Hager, B. H. and R. J. O’Connell, Subduction zone dip angles and flow driven by plate motion, Tectonophys., 50, 111–133, 1978.

    Article  Google Scholar 

  12. Hager, B. H. and R. J. O’Connell, A simple global model of plate dynamics and mantle convection, J. Geophys. Res., 86, 4843–4867, 1981.

    Article  Google Scholar 

  13. Hager, B. H., R. W. Clayton, M. A. Richards, R. P. Comer, and A. M. Dziewonski, Lower mantle heterogeneity, dynamic topography and the geoid, Nature, 313, 541–545, 1985.

    Article  Google Scholar 

  14. Iwase, Y., Three-dimensional infinite Prandtl number convection in a spherical shell with temperature-dependent viscosity, J. Geomag. Geoelector., 48, 1499–1514, 1996.

    Article  Google Scholar 

  15. Karato, S.-I. and P. Wu, Rheology of the upper mantle: A synthesis, Science, 260, 771–778, 1993.

    Article  Google Scholar 

  16. Lerch, F. J. and 19 others, A geopotential model from satellite tracking, altimeter and surface gravity data: GEM-T3, J. Geophys. Res., 99, 2815–2839, 1994.

    Article  Google Scholar 

  17. Moresi, L. and M. Gurnis, Constraints on the lateral strength of slabs from three-dimensional dynamic flow models, Earth Planet. Sci. Lett., 138, 15–28, 1996.

    Article  Google Scholar 

  18. Ricard, Y. and C. Vigny, Mantle dynamics with induced plate tectonics, J. Geophys. Res., 94, 17543–17559, 1989.

    Article  Google Scholar 

  19. Ricard, Y., M. A. Richards, C. Lithgow-Bertelloni, and Y. L. Stunff, A geodynamics model of mantle density heterogeneity, J. Geophys. Res., 98, 21895–21909, 1993.

    Article  Google Scholar 

  20. Richards, M. A. and B. H. Hager, Effects of lateral viscosity variations on long-wavelength geoid anomalies and topography, J. Geophys. Res., 94, 10299–10313, 1989.

    Article  Google Scholar 

  21. Richardson, R. M., Ridge forces, absolute plate motions, and the intraplate stress field, J. Geophys. Res., 97, 11739–11748, 1992.

    Article  Google Scholar 

  22. Tackley, P. J., Three-dimensional simulations of mantle convection with a thermo-chemical basal boundary layer: D”?, in The Core-Mantle Boundary Region, edited by M. Gurnis, M. E. Wysession, E. Knittle, and B. A. Buffett, Geodynamics series 28, pp. 231–253, American Geophysical Union, Washington, D.C., 1998.

    Google Scholar 

  23. Turcotte, D. L. and G. Schubert, Geodynamics: Applications of Continuum Physics to Geological Problems, pp. 450, John Wiley and Sons, New York, 1982.

    Google Scholar 

  24. Wen, L. and D. L. Anderson, Present-day plate motion constraint on mantle rheology and convection, J. Geophys. Res., 102, 24639–24653, 1997.

    Article  Google Scholar 

  25. Zhang, S. and U. Christensen, Some effects of lateral viscosity variations on geoid and surface velocities induced by density anomalies in the mantle, Geophys. J. Int., 114, 531–547, 1993.

    Article  Google Scholar 

  26. Zhong, S. and G. F. Davies, Effects of plate and slab viscosities on the geoid, Earth Planet. Sci. Lett., 170, 487–496, 1999.

    Article  Google Scholar 

  27. Zhong, S. and M. Gurnis, Interaction of weak faults and non-Newtonian rheology produces plate tectonics in a 3D model of mantle flow, Nature, 383, 245–247, 1996.

    Article  Google Scholar 

  28. Zhong, S., M. Gurnis, and L. Moresi, Role of faults, nonlinear rheology, and viscosity structure in generating plates from instantaneous mantle flow models, J. Geophys. Res., 103, 15255–15268, 1998.

    Article  Google Scholar 

  29. Zoback, M. L., First- and second-order patterns of stress in the lithosphere: The world stress map project, J. Geophys. Res., 97, 11703–11728, 1992.

    Article  Google Scholar 

  30. Zoback, M. L., and 27 others, Global patterns of tectonic stress, Nature, 341, 291–298, 1989.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masaki Yoshida.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoshida, M., Honda, S., Kido, M. et al. Numerical simulation for the prediction of the plate motions: Effects of lateral viscosity variations in the lithosphere. Earth Planet Sp 53, 709–721 (2001). https://doi.org/10.1186/BF03352399

Download citation

Keywords

  • Root Mean Square
  • Plate Motion
  • Lower Mantle
  • Mantle Convection
  • Plate Margin