Skip to main content

Oscillation of a mountain root structure due to a Rayleigh wave incidence

Abstract

Spectral amplitudes of Rayleigh waves across a mountain root in the continental crust were studied by the use of the finite difference technique. The crust has a mountain root structure like that of the Tien Shan in China, and a maximum thickness of about 50 km. The waves are numerically simulated by implementing a plane Rayleigh wave incidence on the front of the mountain root structure. The spectral amplitudes of the vertical (W) component are shown to be strongly amplified by the mountain for periods from 20 to 50 s, with a maximum of about 7%, whereas those of the radial (U) component show a slight increase with an increase in period. For the mountain structure with small-scale low velocity zones (LVZ) in the bottom of the root and in the upper mantle, amplitudes of the W-component are enriched at periods slightly longer than those for the structure without the LVZ. For the mountain structure with a double large-scale LVZ in the lower crust and the upper mantle, amplitudes of the W-component are extensively amplified over a wide range beyond 50 s. The period range from 20 to 50 s with high amplifications of the W-component for the mountain root structure with or without the LVZ is consistent with periods, in which the Rayleigh to Love wave conversion is dominant in observed surface waves across the Tien Shan mountains (Pedersen et al., 1998).

References

  • Aki, K. and P. G. Richard, Quantitative seismology. Theory and method, Vol. II, 779–780, W. H. Freeman and Company, San Francisco, 1980.

    Google Scholar 

  • Aki, K. and Y.-B. Tsai, Mechanism of Love-wave excitation by explosive sources, J. Geophys. Res., 77, 1452–1475, 1972.

    Article  Google Scholar 

  • Archambeau, C. B. and C. Sammis, Seismic radiation from explosions in prestressed media and the measurement of tectonic stress in the Earth, Rev. Geophys., 8, 473–499, 1970.

    Article  Google Scholar 

  • Bostock, M. G., Surface wave scattering from 3-D obstacles, Geophys. J. Int., 104, 351–370, 1991.

    Article  Google Scholar 

  • Burov, E. V., M. G. Kogan, H. Lyon-Caen, and P. Molnar, Gravity anomalies, the deep structure, and dynamic processes beneath the Tien Shan, Earth Planet, Sci. Lett., 96, 367–383, 1990.

    Article  Google Scholar 

  • Clayton, R. and B. Engquist, Absorbing boundary conditions for acoustic and elastic wave propagations, Bull. Seis. Soc. Am., 67, 1529–1540, 1977.

    Google Scholar 

  • Cotton, F. and J. P. Avouac, Crustal and upper-mantle structure under the Tien Shan from surface-wave dispersion, Phys. Earth Planet. Inter., 84, 95–109, 1994.

    Article  Google Scholar 

  • Frankel, A. and J. Vidale, A three-dimensional simulation of seismic waves in the Santa Clara Valley, California, from a Loma Prieta aftershock, Bull. Seis. Soc. Am., 82, 2045–2074, 1992.

    Google Scholar 

  • Friederich, W., E. Wielandt, and S. Stange, Multiple forward scattering of surface waves: comparison with an exact solution and Born single-scattering methods, Geophys. J. Int., 112, 264–275, 1993.

    Article  Google Scholar 

  • Harkrider, D. G., J. L. Stevens, and C. B. Archambeau, Theoretical Rayleigh and Love waves from an explosion in prestressed source regions, Bull. Seis. Soc. Am., 84, 1410–1442, 1994.

    Google Scholar 

  • Kennett, B. L. N., Guided wave propagation in laterally varying mediaI. Theoretical developments, Geophys. J. R. Astr. Soc., 79, 235–255, 1984.

    Article  Google Scholar 

  • Kobayashi, R., I. Nakanishi, and S. Tsuboi, Polarization anomalies of surface waves recorded by a broadband seismometer network in Hokkaido, Japan, J. Phys. Earth, 45, 383–396, 1997.

    Article  Google Scholar 

  • Kosarev, G. L., N. V. Petersen, L. P. Vinnik, and S. W. Roecker, Receiver functions for the Tien Shan analog broadband networks: Contracts in the evolution of structures across the Talasso-Fergama faults, J. Geophys. Res., 98, 4437–4449, 1993.

    Article  Google Scholar 

  • Levander, A. R., Finite difference calculation of dispersive Rayleigh wave propagation, Tectonophys., 113, 1–30, 1985.

    Article  Google Scholar 

  • Levshin, A., L. Ratnikova, and J. Berger, Peculiarities of surface-wave propagation across central Eurasia, Bull. Seis. Soc. Am., 82, 2464–2493, 1992.

    Google Scholar 

  • Masse, R. P., Review of seismic source models for underground nuclear explosions, Bull. Seis. Soc. Am., 71, 1249–1268, 1981.

    Google Scholar 

  • Maupin, V. and B.L.N. Kennett, On the use of truncated modal expansions in laterally varying media, Geophys. J. R. Astr. Soc., 91, 837–851, 1987.

    Article  Google Scholar 

  • Mikumo, T, K. Hirahara, and T. Miyatake, Dynamical fault rapture process in heterogeneous media, Tectonophys., 144, 19–36, 1987.

    Article  Google Scholar 

  • Momoi, T, Scattering of Rayleigh waves by a semi-circular rough surface on layered media, Bull. Earthq. Res. Inst., Univ. Tokyo, 62, 163–200, 1987.

    Google Scholar 

  • Pedersen, H. A., J. P. Avouac, and M. Campillo, Anomalous surface waves from Lop Nor nuclear explosions: Observations and numerical modeling, J. Geophys. Res., 103, 15,051–15,068, 1998.

    Article  Google Scholar 

  • Press, F. and C. B. Archambeau, Release of tectonic strain of underground nuclear explosions, J. Geophys. Res., 67, 337–343, 1962.

    Article  Google Scholar 

  • Saito, M., Excitation of free oscillations and surface waves by a point source in a vertically heterogeneous earth, J. Geophys. Res., 72, 3689–3699, 1967.

    Article  Google Scholar 

  • Sato, Y, Dansei Hadouron (Theory of elastic wave motions), pp. 252, Iwanami Shoten, 1978 (in Japanese).

  • Snieder, R., 3-D linearized scattering of surface waves and a formalism for surface wave holography, Geophys. J. R. Astr. Soc., 84, 581–605, 1986.

    Article  Google Scholar 

  • Tanimoto, T, Modelling curved surface wave paths: membrane surface wave synthesis, Geophys. J. Int., 102, 89–100, 1990.

    Article  Google Scholar 

  • Yoshida, M., Group velocities, wave forms, and particle orbits of the first higher mode of oceanic Rayleigh waves excited by a deep earthquake on October 7, 1966, New Hebrides Islands, J. Phys. Earth, 32, 113–136, 1984.

    Article  Google Scholar 

  • Yoshida, M., Study on the propagation of Love waves across irregular structures of the Moho discontinuity, Bull. Earthq. Res. Inst., Univ. Tokyo, 71, 103–226, 1996.

    Google Scholar 

  • Yoshida, M., Fluctuation of group velocity of Love waves across a dent in the continental crust, Earth Planets Space, 52, 393–402, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuru Yoshida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, M. Oscillation of a mountain root structure due to a Rayleigh wave incidence. Earth Planet Sp 53, 1099–1109 (2001). https://doi.org/10.1186/BF03352406

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352406

Keywords