Skip to main content

Effects of water load on geophysical signals due to glacial rebound and implications for mantle viscosity

Abstract

We investigate the effects of the ocean function on predictions of the sea-level changes and other geophysical signals due to glacial rebound. To precisely predict these signals, a realistic ocean function including the effects of the palaeotopography, the distribution of ice sheet and meltwater influx is required. The adoption of a precise ocean function is very important in simulating the observables in Hudson Bay for an earth model with a low lower mantle viscosity of 1021 Pa s. In this case, the contribution from water loads can be comparable to that from ice loads. In the Fennoscandian region, however, the predictions are less sensitive to the details of the ocean function, because the width of the Gulf of Bothnia is very small compared with that of Hudson Bay. With an assumption that the ice model is represented by ARC3+ANT4b, we have examined the viscosity structure using relative sea-levels, gravity anomaly and solid surface gravity changes in North America and northern Europe. This study suggests a lower mantle viscosity of greater than 1022 Pa s and a upper mantle viscosity of (4 10) × 1020 Pa s.

References

  • Cathles, L. M., The Viscosity of the Earth’s Mantle, Princeton University Press, Princeton, 1975.

    Google Scholar 

  • Denton, G. H. and T. J. Hughes, The Last Great Ice Sheets, Wiley, New York, 1981.

    Google Scholar 

  • Dziewonski, A. M. and D. L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Int., 25, 297–356, 1981.

    Article  Google Scholar 

  • Farrell, W. E., Deformation of the Earth by surface loads, Rev. Geophys. Space Phys., 10, 761–797, 1972.

    Article  Google Scholar 

  • Farrell, W. E. and J. A. Clark, On postglacial sealevel, Geophys. J. R. astr. Soc., 46, 637–667, 1976.

    Google Scholar 

  • Fjeldskaar, W. and L. M. Cathles, Rheology of mantle and lithosphere inferred from post-glacial uplift in Fennoscandia, in Glacial Isostasy, Sea-level and Mantle Rheology, Kluwer, The Netherlands, 1991.

    Google Scholar 

  • Forte, A. M. and J. X. Mitrovica, New inferences of mantle viscosity from joint inversion of long-wavelength mantle convection and post-glacial rebound data, Geophys. Res. Lett., 23, 1147–1150, 1996.

    Article  Google Scholar 

  • Hager, B. H., Subducted slabs and the geoid: constraints on mantle rheology and flow, J. Geophys. Res., 89, 6003–6015, 1984.

    Article  Google Scholar 

  • Hager, B. H. and R. W. Clayton, Constraints on the structure of mantle convection using seismic observations, flow models, and the geoid, in Mantle Convection: Plate Tectonics and Global Dynamics, Gordon and Breach, Newark, N. J., 1989.

    Google Scholar 

  • Haskell, N. A., The motion of a viscous fluid under a surface load, Part II, Physics, 7, 56–61, 1936.

    Article  Google Scholar 

  • James, T. S. and E. R. Ivins, Predictions of Antarctic crustal motions driven by present-day ice sheet evolution and by isostatic memory of the last glacial maximum, J. Geophys. Res., 103, 4993–5017, 1998.

    Article  Google Scholar 

  • James, T. S. and A. Lambert, A comparison of VLBI data with the ICE-3G glacial rebound model, Geophys. Res. Lett., 20, 871–874, 1993.

    Article  Google Scholar 

  • James, T. S. and W. J. Morgan, Horizontal motions due to postglacial rebound, Geophys. Res. Lett., 17, 957–960, 1990.

    Article  Google Scholar 

  • Johnston, P., The effect of spatially non-uniform water loads on the prediction of sea-level change, Geophys. J. Int., 114, 615–634, 1993.

    Article  Google Scholar 

  • Kaufmann, G., The onset of Pleistocene glaciation in the Barents Sea: implications for glacial isostatic adjustment, Geophys. J. Int., 131, 281–292, 1997.

    Article  Google Scholar 

  • Lambeck, K. and M. Nakada, Late Pleistocene and Holocene sea-level change along the Australian coast, Palaeogeogr. Palaeoclimatol. Palaeoecol., 89, 143–176, 1990.

    Article  Google Scholar 

  • Lambeck, K., P. Johnston, and M. Nakada, Holocene glacial rebound and sea-level change in NW Europe, Geophys. J. Int., 103, 451–468, 1990.

    Article  Google Scholar 

  • Lambeck, K., P. Johnston, C. Smither, and M. Nakada, Glacial rebound of the British Isles-III. Constraints on mantle viscosity, Geophys. J. Int., 125, 340–354, 1996.

    Article  Google Scholar 

  • Lambeck, K., C. Smither, and P. Johnston, Sea-level change, glacial rebound and mantle viscosity for northern Europe, Geophys. J. Int., 134, 102–144, 1998.

    Article  Google Scholar 

  • Lambert, A., T. S. James, J. O. Liard, and N. Courtier, The role and capability of absolute gravity measurements in determining the temporal variations in the Earth’s gravity field, in Global Gravity Field and its Temporal Variations, Int. Assoc. Geod. Symp., 116, 20–29, 1996.

    Article  Google Scholar 

  • Lambert, A., N. Courtier, G. S. Sasagawa, F. Klopping, D. Winester, T. S. James, and J. O. Liard, New Constraints on Laurentide postglacial rebound from absolute gravity measurements, Geophys. Res. Lett., 20-10, 2109–2112, 2001.

    Article  Google Scholar 

  • Lemoine, F. G., N. K. Pavlis, S. C. Kenyon, R. H. Rapp, E. C. Pavlis, and B. F. Chao, New high-resolution model developed for Earth’s gravitational field, EOS Trans. Am. Geophys. Un., 79, 113–118, 1998.

    Article  Google Scholar 

  • McConnell, R. K., Isostatic adjustment in layered Earth, J. Geophys. Res., 70, 5171–5188, 1965.

    Article  Google Scholar 

  • Milne, G. A., Refining models of the glacial isostatic adjustment process, PhD Thesis, University of Toronto, Toronto, 1998.

    Google Scholar 

  • Milne, G. A. and J. X. Mitrovica, The influence of time-dependent oceancontinent geometry on predictions of post-glacial sea level change in Australia and New Zealand, Geophys. Res. Lett., 25-6, 793–796, 1998.

    Article  Google Scholar 

  • Milne, G. A., J. X. Mitrovica, and J. L. Davis, Near-field hydro-isostasy: the implementation of a revised sea-level equation, Geophys. J. Int., 139, 464–482, 1999.

    Article  Google Scholar 

  • Milne, G. A., J. L. Davis, J. X. Mitrovica, H.-G. Scherneck, J. M. Johansson, M. Vermeer, and H. Koivula, Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia, Science, 291, 2381–2385, 2001.

    Article  Google Scholar 

  • Mitrovica, J. X., Haskell[1935] revisited, J. Geophys. Res., 101, 555–569, 1996.

    Article  Google Scholar 

  • Mitrovica, J. X. and W. R. Peltier, Pleistocene deglaciation and the global gravity field, J. Geophys. Res., 94, 13651–13671, 1989.

    Article  Google Scholar 

  • Mitrovica, J. X. and W. R. Peltier, On post-glacial geoid subsidence over the equatorial oceans, J. Geophys. Res., 96, 20053–20071, 1991.

    Article  Google Scholar 

  • Mitrovica, J. X. and W. R. Peltier, Constraints on mantle viscosity based upon the inversion of post-glacial uplift data from the Hudson Bay region, Geophys. J. Int., 122, 353–377, 1995.

    Article  Google Scholar 

  • Mitrovica, J. X., J. L. Davis, and I. I. Shapiro, A spectral formalism for computing three-dimensional deformations due to surface loads. 1. Theory, J. Geophys. Res., 99, 7057–7073, 1994a.

    Article  Google Scholar 

  • Mitrovica, J. X., J. L. Davis, and I. I. Shapiro, A spectral formalism for computing three-dimensional deformations due to surface loads. 2. Present-day glacial isostatic adjustment, J. Geophys. Res., 99, 7075–7101, 1994b.

    Article  Google Scholar 

  • Munk, W. H. and G. J. F. MacDonald, The Rotation of the Earth, Cambridge University Press, New York, 1960.

    Google Scholar 

  • Nakada, M., Rheological structure of the Earth’s mantle derived from the glacial rebound in Laurentide, J. Phys. Earth, 31, 349–386, 1983.

    Article  Google Scholar 

  • Nakada, M., Holocene sea levels in oceanic island: implications for the rheological structure of the Earth’s mantle, Tectonophys., 121, 263–276, 1986.

    Article  Google Scholar 

  • Nakada, M. and K. Lambeck, Glacial rebound and relative sea-level variations: a new appraisal, Geophys. J. R. astr. Soc., 90, 171–224, 1987.

    Article  Google Scholar 

  • Nakada, M. and K. Lambeck, The melting history of the late Pleistocene Antarctic ice sheet, Nature, 333, 36–40, 1988a.

    Article  Google Scholar 

  • Nakada, M. and K. Lambeck, Non-uniqueness of lithospheric thickness estimates based on glacial rebound data along the east coast of North America, in Mathematical Geophysics, pp. 347–361, Reidel, Dordecht, 1988b.

    Chapter  Google Scholar 

  • Nakada, M. and K. Lambeck, Late Pleistocene and Holocene sea-level changes in Australian region and mantle rheology, Geophys. J., 96, 497–517, 1989.

    Article  Google Scholar 

  • Nakada, M. and K. Lambeck, Late Pleistocene and Holocene sea-level change: evidence for lateral mantle viscosity structure?, in Glacial Isostasy, Sea-level and Mantle Rheology, Kluwer, The Netherlands, 1991.

    Google Scholar 

  • Nakada, M., R. Kimura, J. Okuno, K. Miriwaki, H. Miura, and H. Maemoku, Late Pleistocene and Holocene melting history of the Antarctic ice sheet derivced from sea-level variations, Mar. Geo., 167, 85–103, 2000.

    Article  Google Scholar 

  • Okuno, J. and M. Nakada, Rheological structure of the upper mantle inferred from the Holocene sea-level change along the west coast of Kyushu, Japan, in Dynamics of the Ice Age Earth: A Modern Perspective, pp. 443–458, Trans Tech Publications Ltd, Brandrain, Switzerland, 1998.

    Google Scholar 

  • Pari, G. and W. R. Peltier, The free-air gravity constraint on subcontinental mantle dynamics, J. Geophys. Res., 101, 28105–28132, 1996.

    Article  Google Scholar 

  • Peltier, W. R., The impulse response of a Maxwell Earth, Rev. Geophys., 12, 649–669, 1974.

    Article  Google Scholar 

  • Peltier, W. R., ‘Implicit ice’ in the global theory of glacial isostatic adjustment, Geophys. Res. Lett., 25, 3955–3958, 1998.

    Article  Google Scholar 

  • Peltier, W. R. and J. T. Andrews, Glacial isostatic adjustment—I. The forward problem, Geophys. J. R. astr. Soc., 46, 605–646, 1976.

    Article  Google Scholar 

  • Simons, M. and B. H. Hager, Localization of the gravity field and the signature of glacial rebound, Nature, 390, 500–504, 1997.

    Article  Google Scholar 

  • Tushingham, A. M. and W. R. Peltier, ICE-3G: a new global model of late Pleistocene deglaciation based upon geophysical predictions of postglacial relative sea level change, J. Geophys. Res., 96, 4497–4523, 1991.

    Article  Google Scholar 

  • Tushingham, A. M. and W. R. Peltier, Validation of ICE-3G model of Würm-Wisconsin deglaciation using a global data base of relative sea level histories, J. Geophys. Res., 97, 3285–3304, 1992.

    Article  Google Scholar 

  • Walcott, R. I., Late Quaternary vertical movements in eastern North America: Quantitative evidence of glacial-isostatic rebound, Rev. Geophys., 10, 849–884, 1972.

    Article  Google Scholar 

  • Walcott, R. I., Structure of the earth from glacio-isostatic rebound, Annu. Rev. Earth Planet. Sci., 1, 15–37, 1973.

    Article  Google Scholar 

  • Walcott, R. I., Rheological models and observational data of glacio-isostatic rebound, in Earth Rheology, Isostasy and Eustasy Wiley, New York, 1980.

    Google Scholar 

  • Wu, P. and W. R. Peltier, Glacial isostatic adjustment and the free-air gravity anomaly as a constraint on deep mantle viscosity, Geophys. J. R. astr. Soc., 74, 377–450, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun’ichi Okuno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okuno, J., Nakada, M. Effects of water load on geophysical signals due to glacial rebound and implications for mantle viscosity. Earth Planet Sp 53, 1121–1135 (2001). https://doi.org/10.1186/BF03352408

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352408

Keywords