Skip to main content

A new technique for mapping of total electron content using GPS network in Japan

Abstract

The dual frequency radio signals of the Global Positioning System (GPS) allow measurements of the total number of electrons, called total electron content (TEC), along a ray path from GPS satellite to receiver. We have developed a new technique to construct two-dimensional maps of absolute TEC over Japan by using GPS data from more than 1000 GPS receivers. A least squares fitting procedure is used to remove instrumental biases inherent in the GPS satellite and receiver. Two-dimensional maps of absolute vertical TEC are derived with time resolution of 30 seconds and spatial resolution of 0.15° × 0.15° in latitude and longitude. Our method is validated in two ways. First, TECs along ray paths from the GPS satellites are simulated using a model for electron contents based on the IRI-95 model. It is found that TEC from our method is underestimated by less than 3 TECU. Then, estimated vertical GPS TEC is compared with ionospheric TEC that is calculated from simultaneous electron density profile obtained with the MU radar. Diurnal and day-to-day variation of the GPS TEC follows the TEC behavior derived from MU radar observation but the GPS TEC is 2 TECU larger than the MU radar TEC on average. This difference can be attributed to the plasmaspheric electron content along the GPS ray path. This method is also applied to GPS data during a magnetic storm of September 25, 1998. An intense TEC enhancement, probably caused by a northward expansion of the equatorial anomaly, was observed in the southern part of Japan in the evening during the main phase of the storm.

References

  • Balan, N., Y. Otsuka, T. Tsugawa, S. Miyazaki, T. Ogawa, and K. Shiokawa, Plasmaspheric electron content in the GPS ray paths over Japan under magnetically quiet conditions at high solar activity, Earth Planets Space, 54, this issue, 71–79, 2002.

    Article  Google Scholar 

  • Belwitt, G., An automatic editing algorithm for GPS data, Geophys. Res. Lett., 17, 199–202, 1990.

    Article  Google Scholar 

  • Bilitza, D. (Ed.), International Reference Ionosphere 1990, Rep. NSSDC, 90-22, National Space Science Center, Greenbelt, MD, 1990.

  • Bishop, G. J., A. Mazzella, E. Holland, and S. Rao, Algorithms that use the ionosphere to control GPS errors, in Proceedings of the IEEE 1996 Position Location and Navigation Symposium (PLANS) pp. 145–152, IEEE Press, Piscataway, N. J., 1996.

    Google Scholar 

  • Bishop, G. J., D. S. Coco, N. Lunt, C. Coker, A. J. Mazzella, and L. Kersley, Application of SCORE to extract protonospheric electron content from GPS/NNSS observations, in Proceedings of ION GPS ’97, pp. 207–216, Inst. of Navig., Alexandria, Va., 1997.

    Google Scholar 

  • Buonsanto, M. J., S. A. Gonzalez, X. Pi, J. M. Ruohoniemi, M. P. Sulzer, W. E. Swartz, J. P. Thayer, and D. N. Yuan, Radar chain study of the May, 1995 storm, J. Atmos. Solar Terr. Phys., 61, 233–248, 1999.

    Article  Google Scholar 

  • Davies, K., Ionospheric Radio, IEE Electromagnetic Waves Series, 31, Peter Peregrinus, London, 1990.

    Google Scholar 

  • Fukao, S., T. Sato, T. Tsuda, S. Kato, K. Wakasugi, and T. Makihira, The MU radar with an active phased array system, 1, Antenna and power amplifiers, Radio Sci., 20, 1155–1168, 1985a.

    Article  Google Scholar 

  • Fukao,,S., T. Tsuda, T. Sato, S. Kato, K. Wakasugi, and T. Makihira, The MU radar with an active phased array system, 2, Inhouse equipment, Radio Sci., 20, 1169–1176, 1985b.

    Article  Google Scholar 

  • Ho, C. M., A. J. Mannucci, U. J. Lindqwister, X. Pi, and B. T. Tsurutani, Global ionosphere perturbations monitored by the worldwide GPS network, Geophys. Res. Lett., 23, 3219–3222, 1996.

    Article  Google Scholar 

  • Kawamura, S., Y. Otsuka, S.-R. Zhang, S. Fukao, and W. L. Oliver, A climatology of middle and upper atmosphere radar observations of thermospheric winds, J. Geophys. Res., 105, 12,777–12,788, 2000.

    Article  Google Scholar 

  • Kersley, L. and J. A. Klobuchar, Storm associated protonospheric depletion and recovery, Planet. Space Sci., 28, 453–458, 1980.

    Article  Google Scholar 

  • Kersley, L., H. Hajeb-Hossienieh, and K. J. Edwards, Post-geomagnetic storm protonospheric replenishment, Nature, 271, 429–430, 1978.

    Article  Google Scholar 

  • Lunt, N., L. Kersley, G. J. Bishop, A. J. Mazzella, and G. J. Bailey, The effect of the protonosphere on the estimation of GPS total electron content: Validation using model simulations, Radio Sci., 34, 1261–1271, 1999a.

    Article  Google Scholar 

  • Lunt, N., L. Kersley, and G. J. Bailey, The influence of the protonosphere on GPS observations: Model simulations, Radio Sci., 34, 725–732, 1999b.

    Article  Google Scholar 

  • Mannucci, A. J., B. D. Wilson, D. N. Yuan, C. H. Ho, U. J. Lindqwister, and T. F. Runge, A global mapping technique for GPS-derived ionospheric total electron content measurements, Radio Sci., 33, 565–582, 1998.

    Article  Google Scholar 

  • Miyazaki, S., T. Saito, M. Sasaki, Y. Hatanaka, and Y. Iimura, Expansion of GSI’s nationwide GPS array, Bull. Geogr. Surv. Inst., 43, 23–34, 1997.

    Google Scholar 

  • Ogawa, T., K. Sinno, M. Fujita, and J. Awaka, Severe disturbances of VHF and GHz waves from geostationary satellites during a magnetic storm, J. Atmos. Terr. Phys., 42, 637–644, 1980.

    Article  Google Scholar 

  • Ogawa, T., N. Balan, Y. Otsuka, K. Shiokawa, C. Ihara, T. Shimomai, and A. Saito, Observations and modeling of 630 nm airglow and total electron content associated with traveling ionospheric disturbances over Shigaraki, Japan, Earth Planets Space, 54, this issue, 45–56, 2002.

    Article  Google Scholar 

  • Otsuka, Y., S. Kawamura, N. Balan, S. Fukao, and G. J. Bailey, Plasma temperature variations in the ionosphere over the middle and upper atmosphere radar, J. Geophys. Res., 103, 20,705–20,713, 1998.

    Article  Google Scholar 

  • Sardón, E. and N. Zarraoa, Estimation of total electron content using GPS data: How stable are the differential satellite and receiver instrumental biases?, Radio Sci., 32, 1899–1910, 1997.

    Article  Google Scholar 

  • Sardón, E., A. Rius, and N. Zarraoa, Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations, Radio Sci., 29, 577–586, 1994.

    Article  Google Scholar 

  • Yamamoto, M., S. Fukao, R. F. Woodman, T. Ogawa, T. Tsuda, and S. Kato, Mid-latitude E-region field-aligned irregularities observed with the MU radar, J. Geophys. Res., 96, 15,943–15,949, 1991.

    Article  Google Scholar 

  • Yamamoto, M., S. Fukao, T. Ogawa, and S. Kato, A morphological study of mid-latitude E-region field-aligned irregularities revealed by the MU radar, J. Atmos. Terr. Phys., 54, 769–777, 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Otsuka.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Otsuka, Y., Ogawa, T., Saito, A. et al. A new technique for mapping of total electron content using GPS network in Japan. Earth Planet Sp 54, 63–70 (2002). https://doi.org/10.1186/BF03352422

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352422

Keywords

  • Total Electron Content
  • Electron Content
  • Vertical Total Electron Content
  • Instrumental Bias
  • Total Electron Content Enhancement