Skip to main content

Advertisement

Plasmaspheric electron content in the GPS ray paths over Japan under magnetically quiet conditions at high solar activity

Article metrics

  • 310 Accesses

  • 37 Citations

Abstract

Vertical total electron content (GPS-TEC) data obtained from the dual-frequency GPS receiver network (GEONET) in Japan are compared with those calculated using the Sheffield University plasmasphere-ionosphere model (SUPIM). The model is also used to estimate the electron content in the plasmaspheric sections of GPS ray paths for the three seasons of high solar activity (F10.7 = 165) under magnetically quiet conditions. According to the estimates, the plasmaspheric sections of vertical GPS ray paths over Japan at altitudes above the O+ to H+ transition height and above the upper altitude (2500 km) of Faraday rotation contain up to 11 and 9 TEC units (1 TEC unit = 1016 electrons m−2) of free electrons, respectively. The free electrons present above the Faraday rotation altitude can cause propagation errors of up to 4.9 ns in time delay and 1.6 m in range at the GPS L1 (1.57542 GHz) frequency. The plasmaspheric electron content, PEC, changes appreciably with season and latitude and very little with the time of the day. However, the percentage contribution of PEC to GPS-TEC changes most significantly with the time of the day; the contribution varies from a minimum of about 12% during daytime at equinox to a maximum of about 60% at night in winter.

References

  1. Bailey, G. J. and N. Balan, A low-latitude ionosphere-plasmasphere model, STEP Handbook, edited by R. W. Schunk, p. 173, Utah State University, 1996.

  2. Bailey, G. J., N. Balan, and Y. Z. Su, The Sheffield University plasmasphere-ionosphere model—a review, J. Atmos. Terr. Phys., 59, 1541, 1997.

  3. Balan, N. and G. J. Bailey, Equatorial plasma fountain and its effects: Possibility of an additional layer, J. Geophys. Res., 100, 21,421–21,431, 1995.

  4. Balan, N., G. J. Bailey, and B. Jayachandran, Ionospheric evidence for a non-linear relationship between the solar EUV and 10.7 cm fluxes during an intense solar cycle, Planet. Space Sci., 41, 141–145, 1993.

  5. Balan, N., G. J. Bailey, and R. J. Moffett, Modelling studies of ionospheric variations during an intense solar cycle, J. Geophys. Res., 99, 17,467–17,475, 1994.

  6. Balan, N., Y. Otsuka, and S. Fukao, New aspects in the annual variations of the ionosphere observed by the MU radar, Geophys. Res. Lett., 24, 2287–2290, 1997.

  7. Balan, N., Y. Otsuka, G. J. Bailey, and S. Fukao, Equinoctial asymmetries in the ionosphere and thermosphere observed by the MU radar, J. Geophys. Res., 103, 9481–9495, 1998.

  8. Carpenter, D. L. and C. G. Park, On what ionospheric workers should know about the plasmapause-plasmasphere, Rev. Geophys., 11, 133–154, 1973.

  9. Chi, P. J., C. T. Russell, S. Musman, W. K. Peterson, G. Le, V. Angelopoulos, G. D. Reeves, M. B. Moldwin, and F. K. Chun, Plasmaspheric depletion and refilling associated with the September 25, 1998 magnetic storm observed by ground magnetometers at L = 2, Geophys. Res. Lett., 27, 633–636, 2000.

  10. Davies, K., Recent progress in satellite radio beacon studies with particular emphasis on the ATS-6 radio beacon experiment, Space Sci. Rev., 25, 357, 1980.

  11. Doherty, P. H., J. A. Klobuchar, G. J. Bailey, N. Balan, and M. W. Fox, Determinations of protonospheric electron content from TEC measurements from GPS and Faraday rotation and comparisons against the Sheffield plasmasphere model, Proceedings of the International Beacon Satellite Symposium, edited by M. C. Lee, pp. 118–121, Mass. Inst. of Technol., Cambridge, 1992.

  12. Evans, J. V., Satellite beacon contributions to studies of the structure of the ionosphere, Rev. Geophys., 15, 325–350, 1977.

  13. Fejer, B. G., E. R. de Paula, S. A. Gonzales, and R. F. Woodman, Average vertical and zonal F region plasma drifts over Jicamarca, J. Geophys. Res., 96, 13,901, 1991.

  14. Gallagher, D. L., P. D. Craven, and R. H. Comfort, An empirical model of the Earth’s plasmasphere, Adv. Space Res., 8, 15–24, 1988.

  15. Hedin, A. E., MSIS-86 thermospheric model, J. Geophys. Res., 92, 4649, 1987.

  16. Hedin, A. E. et al., Revised global model of thermosphere winds using satellite and ground-based observations, J. Geophys. Res., 96, 7657, 1991.

  17. Kersley, L. and J. A. Klobuchar, Comparison of protonospheric electron content measurements from the American and European sectors, Geophys. Res. Lett., 5, 123–126, 1978.

  18. Kersley, L., H. Hajeb-Hossienieh, and K. J. Edwards, Postgeomagnetic storm protonospheric replenishment, Nature, 271, 429–430, 1978.

  19. Kimura, I., K. Tsunehara, A. Hikuma, Y. Z. Su, Y. Kasahara, and H. Oya, Global electron density distribution in the plasmasphere deduced from Akebono wave data and the IRI model, J. Atmos. Solar-Terr. Phys., 59, 1569, 1997.

  20. Kimura, I., Y. Kasahara, and H. Oya, Determination of Global plasmaspheric electron density profile by tomographic approach using omega signals and ray tracing, J. Atmos. Solar-Terr. Phys., 2000 (in press).

  21. Klobuchar, J. A., Ionospheric time-delay algorithm for single frequency GPS users, IEEE Trans. Aerosp. Electron. Syst., AES-23, 325–331, 1987.

  22. Lanyi, G. E. and T. Roth, A comparison of mapped and measured total electron content using Global Positioning System and beacon satellite observations, Radio Sci., 23, 483, 1988.

  23. Lunt, N., L. Kersley, and G. J. Bailey, The influence of the protonosphere on GPS observations: Model simulations, Radio Sci., 34, 725–732, 1999.

  24. Ogawa, T., K. Sinno, M. Fujita, and J. Awaka, Severe disturbances of VHF and GHz waves from geostationary satellites during a magnetic storm, J. Atmos. Terr. Phys., 42, 637–644, 1980.

  25. Oliver, W. L., M. Yamamoto, T. Takami, S. Fukao, M. Yamamoto, and T. Tsuda, Middle and Upper Atmosphere Radar observations of ionospheric electric fields, J. Geophys. Res., 98, 11,615, 1993.

  26. Otsuka, Y. et al., A new technique for mapping of total electron content using GPS network in Japan, Earth Planets Space, 54, this issue, 63–70, 2002.

  27. Richards, P. G. and D. G. Torr, Ratios of photoelectron to EUV ionization rates for aeronomic studies, J. Geophys. Res., 93, 4060, 1988.

  28. Rishbeth, H. and C. S. G. K. Setty, The F-layer at sunrise, J. Atmos. Terr. Phys., 20, 263, 1961.

  29. Saito, A., S. Fukao, and M. Miyazaki, High resolution mapping of TEC perturbations with the GSI GPS network over Japan, Geophys. Res. Lett., 25, 3079–3083, 1999.

  30. Titheridge, J. E., Determination of ionospheric electron content from the Faraday rotation of geostationary satellite signals, Planet. Space. Sci., 20, 353, 1972.

  31. Titheridge, J. E., The electron content of the southern mid-latitude ionosphere 1965–1971, J. Atmos. Terr. Phys., 35, 981, 1973.

  32. Tobiska, W. K., Revised solar extreme ultraviolet flux model, J. Atmos. Terr. Phys., 53, 1005, 1991.

Download references

Author information

Correspondence to N. Balan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Keywords

  • Global Position System
  • Total Electron Content
  • Electron Content
  • Faraday Rotation
  • Vertical Total Electron Content