Skip to main content

Error evaluation in acoustic positioning of a single transponder for seafloor crustal deformation measurements

Abstract

The observation of seafloor crustal deformation is very important to understand plate motions, nucleation processes and mechanisms of great interplate earthquakes as well as the activities of submarine volcanoes. We have been developing an observation system for seafloor crustal deformation. This system consists of two main components; (1) kinematic GPS positioning of an observation vessel and (2) accurate acoustic measurements of distances between a transponder attached on the side of the vessel (onboard station) and one located on the ocean bottom (seafloor station). In this study, we performed numerical simulations to estimate measurement errors with acoustic positioning assuming acoustic velocities in the sea water and the distribution of observation points around the single seafloor station. We found that the position of the seafloor station which we can obtain by analyzing travel-time data might have around 18-cm discrepancy with respect to its “true” position. Colombo et al. (2001) reported that the position of the vessel can be determined with about 10-cm error by kinematic GPS positioning. These results indicate that the system should be able to detect seafloor crustal deformation much larger than 28 cm, including pre-, co-, and post-seismic slips due to the large earthquakes at subduction zones, slow and silent earthquakes, etc. Therefore, we emphasize the importance of continuous observations with a nationwide geodetic observational network for seafloor crustal deformation.

References

  1. Ando, M., Source mechanisms and tectonic significance of historical earthquakes along the Nankai trough, Japan, Tectonophysics, 27, 119–140, 1975.

    Article  Google Scholar 

  2. Asada, A. and T. Yabuki, Progress in the long-term seafloor geodesy on the Kumano Trough, J. Geography, 110, 529–543, 2001 (in Japanese with English abstract).

    Article  Google Scholar 

  3. Colombo, O. L., A. G. Evans, M. Ando, K. Tadokoro, K. Sato, and T. Yamada, Speeding up the estimation of floated ambiguities for sub-decimeter kinematic positioning at sea, Proc. ION GPS 2001, Salt Lake City, U.S.A., 2001.

  4. Cummins, P. R., T. Hori, and Y. Kaneda, Splay fault and megathrust earthquake slip in the Nankai Trough, Earth Planets Space, 53, 243–248, 2001.

    Article  Google Scholar 

  5. Del Grosso, V. A., New equation for the speed of sound in natural waters (with comparisons to other equations), J. Acoust. Soc. Am., 56, 1084–1091, 1974.

    Article  Google Scholar 

  6. Dragert, H., K. Wang, and T. James, A silent slip event on the deeper Cascadia subduction interface, Science, 292, 1525–1528, 2001.

    Article  Google Scholar 

  7. Fujimoto, H., T. Kanazawa, and H. Murakami, Experiment on precise seafloor acoustic ranging—A promising result of observation—, J. Seismol. Soc. Jpn., Ser. 2, 48, 289–292, 1995 (in Japanese).

    Google Scholar 

  8. Greenewalt, D. and C. M. Gordon, Short-term variability in the bottom boundary layer of the deep ocean, J. Geophys. Res., 83, 4713–4716, 1978.

    Article  Google Scholar 

  9. Heki, K., S. Miyazaki, and H. Tsuji, Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595–598, 1997.

    Article  Google Scholar 

  10. Hirose, H., K. Hirahara, F. Kimata, N. Fujii, and S. Miyazaki, A slow thrust slip event following the two 1996 Hyuganada earthquakes beneath the Bungo Channel, southwest Japan, Geophys. Res. Lett., 26, 3237–3240, 1999.

    Article  Google Scholar 

  11. Ito, T., S. Yoshioka, and S. Miyazaki, Interplate coupling in southwest Japan deduced from inversion analysis of GPS data, Phys. Earth Planet. Inter., 115, 17–34, 1999.

    Article  Google Scholar 

  12. Kato, T. and M. Ando, Source mechanisms of the 1944 Tonankai and 1946 Nankaido earthquakes: Spatial heterogeneity of rise times, Geophys. Res. Lett., 24, 2055–2058, 1997.

    Article  Google Scholar 

  13. Kawasaki, I., Y. Asai, Y. Tamura, T. Sagiya, N. Mikami, Y. Okada, M. Sakata, and M. Kasahara, The 1992 Sanriku-Oki, Japan, Ultra-Slow Earthquake, J. Phys. Earth, 43, 105–116, 1995.

    Article  Google Scholar 

  14. Miyazaki, S. and Y. Hatanaka, Summary of the GPS Earth Observation Network in Japan being carried out by the Geographical Survey Institute, Meteorological Research Note, 192, 11–22, 1998 (in Japanese).

    Google Scholar 

  15. National Astronomical Observatory (ed.), Rika Nenpyo (Chronological Scientific Tables), pp. 636–637, Maruzen Co. Ltd., Tokyo, 2002.

  16. Nishimura, S., M. Ando, and S. Miyazaki, Inter-plate coupling along the Nankai Trough and southeastward motion along southern part of Kyushu, J. Seismol. Soc. Jpn., Ser. 2, 52, 443–456, 1999 (in Japanese with English abstract).

    Google Scholar 

  17. Obana, K., H. Katao, and M. Ando, Seafloor positioning system with GPS-acoustic link for crustal dynamics observation—a preliminary result from experiments in the sea—, Earth Planets Space, 52, 415–423, 2000.

    Article  Google Scholar 

  18. Ozawa, S., T. Murakami, and T. Tada, Time-dependent inversion study of the slow thrust event in the Nankai trough subduction zone, southwestern Japan, J. Geophys. Res., 106, 787–802, 2001a.

    Article  Google Scholar 

  19. Ozawa, S., T. Murakami, M. Kaidzu, T. Tada, T. Sagiya, H. Yarai, and T. Nishimura, Anomalous crustal deformation in the Tokai region in 2001, Abstr. Seismol. Soc. Jpn., C02, 2001b (in Japanese with English abstract).

  20. Ozawa, T., T. Tabei, and S. Miyazaki, Interplate coupling along the Nankai Trough off southwest Japan derived from GPS measurements, Geophys. Res. Lett., 26, 927–930, 1999.

    Article  Google Scholar 

  21. Plafker, G., Alaskan earthquake of 1964 and Chilean earthquake of 1960: Implications for arc tectonics, J. Geophys. Res., 77, 901–923, 1972.

    Article  Google Scholar 

  22. Sagiya, T. and W. Thatcher, Coseismic slip resolution along a plate boundary megathrust: The Nankai Trough, southwest Japan, J. Geophys. Res., 104, 1111–1129, 1999.

    Article  Google Scholar 

  23. Sato, K., M. Hashimoto, Y. Hoso, F. Ohya, S. Matsuo, S. Fujihara, H. Hirose, H. Hayashi, Y. Ooi, T. Okuda, K. Tadokoro, K. Hirahara, M. Ando, T. Yamada, H. Takiguchi, M. Abe, T. Tabei, H. Chikazoe, Y. Kakehi, Y. Itani, and M. Yamauchi, Evaluation of kinematic GPS positioning accuracy: (1) Different baseline length, Abstr. Joint Meet. Earth Planet. Sci., Dm-002, 2001.

  24. Shinohara, M., E. Araki, T. Kanazawa, H. Mikada, M. Mochizuki, K. Suyehiro, and Y. Fukao, OHP network seafloor borehole observatory— Northwestern Pacific basin, Abstr. Joint Meet. Earth Planet. Sci., Sd-003, 2000.

  25. Spiess, F. N., C. D. Chadwell, J. A. Hildebrand, L. E. Young, G. H. Purcell, Jr., H. Dragert, Precise GPS/Acoustic positioning of seafloor reference points for tectonic studies, Phys. Earth Planet. Inter., 108, 101–112, 1998.

    Article  Google Scholar 

  26. Tadokoro, K., M. Ando, K. Sato, T. Yamada, T. Okuda, H. Katao, and K. Kishimoto, Development of an observation system for ocean bottom crustal deformation using an acoustic ranging—GPS Link, J. Geography, 110, 521–528, 2001 (in Japanese with English abstract).

    Article  Google Scholar 

  27. Tanioka, Y. and K. Satake, Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slip caused by the earthquake, Earth Planets Space, 53, 235–241, 2001a.

    Article  Google Scholar 

  28. Tanioka, Y. and K. Satake, Detailed coseismic slip distribution of the 1944 Tonankai earthquake estimated from tsunami waveforms, Geophys. Res. Lett., 28, 1075–1078, 2001b.

    Article  Google Scholar 

  29. Thatcher, W., Silent slip on the Cascadia subduction interface, Science, 292, 1495–1496, 2001.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takuji Yamada.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yamada, T., Ando, M., Tadokoro, K. et al. Error evaluation in acoustic positioning of a single transponder for seafloor crustal deformation measurements. Earth Planet Sp 54, 871–881 (2002). https://doi.org/10.1186/BF03352435

Download citation

Keywords

  • Global Position System
  • Sound Speed
  • Very Long Baseline Interferometry
  • Crustal Deformation
  • Nankai Trough