Skip to main content
  • Article
  • Published:

Electron density in the F region derived from GPS/MET radio occultation data and comparison with IRI

Abstract

The inversion of electron density from total electron content (TEC) measurements of GPS radio occultation is investigated by means of simulated data from the International Reference Ionosphere IRI-2001 and observations by the GPS/MET satellite experiment. In both cases a meridional slice of electron density is derived for northern summer solstice June/July 1995 from the midnight to the noon sector of the Earth’s ionosphere. By means of the simulated occultation data a new 2-D recovery method is tested considering electron density variations along the ray path through a non-spherical ionosphere. This method is as fast as the Abel inversion. The relative retrieval error is less than a few percent around and beyond the F2-layer peak. The resolution (in latitude) of the 2-D recovery method is significantly better than those of the Abel inversion which assumes spherical symmetry of the ionosphere along the ray path. After this simulation test, the 2-D recovery method and the Abel inversion are applied to the noon-midnight GPS/MET data in June/July 1995, near to solar minimum. The advantages of the 2-D recovery method are in case of the GPS/MET observations questionable. This could be due to data gaps and TEC errors disturbing the 2-D recovery method more than the robust Abel inversion. Finally meridional slices are derived for other local times by the Abel inversion. Because of missing data and uncertainty of possible retrieval errors the discussion of the diurnal and global variations of the F region is confined to the most significant features. Clear departures between GPS/MET and IRI are found for the polar winter ionosphere and the nighttime topside ionosphere at low latitudes. Generally the GPS/MET observations and the IRI predictions agree well for most local times and latitude regions.

References

  • Bilitza, D., International Reference Ionosphere 2000, Radio Sci., 36, 261–275, 2001.

    Article  Google Scholar 

  • Dymond, K. F. and R. J. Thomas, A technique for using measured ionospheric density gradients and GPS occultations for inferring the nighttime ionospheric electron density, Radio Sci., 36, 1141–1148, 2001.

    Article  Google Scholar 

  • Galushko, V. G., V. V. Paznukhov, Y. M. Yampolski, and J. C. Foster, Incoherent scatter observations of AGW/TID events generated by the moving solar terminator, Ann. Geophys., 16, 821–827, 1998.

    Article  Google Scholar 

  • Hajj, G. A., L. C. Lee, X. Pi, L. J. Romans, W. S. Schreiner, P. R. Straus, and C. Wang, COSMIC GPS ionospheric sensing and space weather, Terr. Atmos. Ocean. Sci., 11, 235–272, 2000.

    Google Scholar 

  • HernandĂ©z-Pajares, M., J. M. Juan, J. Sanz, and J. G. SolĂ©, Global obervation of the ionopheric electronic response to solar events using ground and LEO GPS data, J. Geophys. Res., 103, 20789–20796, 1998.

    Article  Google Scholar 

  • Hocke, K. and K. Igarashi, Structure of the Earth’s lower ionosphere observed by GPS/MET radio occultation, J. Geophys. Res., 107, 10.1029/2001JA900158, 2002.

    Google Scholar 

  • Kaplan, E. D., Understanding GPS: Principles and Applications, Artech House, Norwood, MA, 1996.

    Google Scholar 

  • Kelley, M. C., The Earth s Ionosphere, Academic Press, San Diego, 1989.

    Google Scholar 

  • Lee, L.-C., C. Rocken, and E. R. Kursinski (Eds), Applications of Constellation Observing System for Meteorology, Ionosphere and Climate, Springer-Verlag, Hong Kong, 384 pp., 2001.

    Google Scholar 

  • Leitinger, R., H.-P. Ladreiter, and G. Kirchengast, Ionosphere tomography with data from satellite reception of GNSS signals and ground reception of Navy Nav Satellite System signals, Radio Sci., 32, 1657–1669, 1997.

    Article  Google Scholar 

  • Melbourne, W. G., E. S. Davis, C. B. Duncan, G. A. Hajj, K. R. Hardy, E. R. Kursinski, T. K. Meehan, and L. E. Young, The application of space-borne GPS to atmospheric limb sounding and global change monitoring, JPL Publication, 94-18, Jet Propulsion Laboratory, Pasadena, California, 1994.

    Google Scholar 

  • Mortensen, M. D., R. P. Linfield, and E. R. Kursinski, Vertical resolution approaching 100m for GPS occultations of the Earth’ atmosphere, Radio Sci., 34, 1475–1484, 1999.

    Article  Google Scholar 

  • Nava, B., S. M. Radicella, S. Pulinets, and V. Depuev, Modelling the bottom and topside electron density and TEC with profile data from topside ionograms, Adv. Space Res., 27(1), 31–34, 2001.

    Article  Google Scholar 

  • Rius, A., G. Ruffini, and A. Romeo, Analysis of ionospheric electrondensity distribution from GPS/MET occultations, IEEE Trans. on Geoscience and Remote Sensing, 36(2), 383–394, 1998.

    Article  Google Scholar 

  • Rocken, C., R. Anthes, M. Exner, D. Hunt, S. Sokolovskiy, R. Ware, M. Gorbunov, W. Schreiner, D. Feng, B. Herman, Y.-H. Kuo, and X. Zou, Analysis and validation of GPS/MET data in the neutral atmosphere. J. Geophys. Res., 102, 29849–28966, 1997.

    Article  Google Scholar 

  • Schreiner, W. S., D. C. Hunt, C. Rocken, and S. V. Sokolovskiy, Precise GPS data processing for the GPS/MET radio occultation mission at UCAR, Proc. of the Institute of Navigation — Navigation 2000, 103–112, Alexandria, Va., 1998.

  • Schreiner, W. S., S. V. Sokolovskiy, C. Rocken, and D. C. Hunt, Analysis and validation of GPS/MET radio occultation data in the ionosphere, Radio Sci., 34, 949–966, 1999.

    Article  Google Scholar 

  • Somsikov, V. M. and B. Ganguly, On the mechanism of formation of atmospheric inhomogeneities in the solar terminator region, J. Atmos. Terr. Phys., 57, 75–83, 1995.

    Article  Google Scholar 

  • Steiner, A., High resolution sounding of key climate variables using the radio occultation technique, Wiss. Bericht No. 3/1998, Inst. f. Meteorologie und Geophysik, University Graz, Austria, pp. 84–85, 1998.

    Google Scholar 

  • Tsai, L.-C., W.-H. Tsai, W. S. Schreiner, F. T. Berkey, and J. Y. Liu, Comparisons of GPS/MET retrieved ionospheric electron density and ground based ionosonde data, Earth Planets Space, 53, 193–205, 2001.

    Article  Google Scholar 

  • Vorob’ev, V. V., A. S. Gurvich, V. Kan, S. V. Sokolovskii, O. V. Fedorova, and A. V. Shmakov, Structure of the ionosphere based on radio occultation data from GPS ‘Microlab-1’ satellites: preliminary results, Earth Obs. Rem. Sen., 15, 609–622, 1999.

    Google Scholar 

  • Yakovlev, O. I., S. S. Matyugov, and I. A. Vilkov, Attenuation and scintillation of radio waves in the Earth’s atmosphere from radio occultation experiments on satellite-to-satellite links, Radio Sci., 30, 591–602, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klemens Hocke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hocke, K., Igarashi, K. Electron density in the F region derived from GPS/MET radio occultation data and comparison with IRI. Earth Planet Sp 54, 947–954 (2002). https://doi.org/10.1186/BF03352442

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352442

Keywords