Skip to main content

Prediction of the Dst index from solar wind parameters by a neural network method

Abstract

Using the Elman-type neural network technique, operational models are constructed that predict the Dst index two hours in advance. The input data consist of real-time solar wind velocity, density, and magnetic field data obtained by the Advanced Composition Explorer (ACE) spacecraft since May 1998 (http://www2.crl.go.jp/uk/uk223/service/nnw/index.html). During the period from February to October 1998, eleven storms occurred with minimum Dst values below -80 nT. For ten of these storms the differences between the predicted minimum Dst and the minimum Dst calculated from ground-based magnetometer data were less than 23%. For the remaining one storm (beginning on 19 October 1998) the difference was 48%. The discrepancy is likely to stem from a imperfect correlation between the solar wind parameters near ACE and those near the earth. While the IMF Bz remains to be the most important parameter, other parameters do have their effects. For instance, Dst appears to be enhanced when the azimuthal direction of IMF is toward the sun. A trapezoid-shaped increase in the solar wind density enhances the main phase Dst by almost 10% compared with the case of no density increase. Velocity effects appear to be stronger than the density effects. Our operational models have, in principle, no limitations in applicability with respect to storm intensity.

References

  • Akasofu, S.-I., Predicting Geomagnetic Storms as a Space Weather Project, Geophys. Monogr. Ser., 125, edited by P. Song, H. J. Singer, and G. L. Siscoe, AGU Washington DC, 329–337, 2001.

  • Blanchard, G. T. and R. L. McPherron, A bimodal representation of the response function relating the solar wind electric field to the AL index, Solar-Terrestrial Prediction Proc., vol. 2, pp. 479–486, U. S. Dept. of Commerce, Boulder, Colo., 1992.

  • Burton, R. K., R. L. McPherron, and C. T. Russel, An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 80, 4204–4214, 1975.

    Article  Google Scholar 

  • Ebihara, Y. and M. Ejiri, Modeling of solar wind control of the ring current buildup: A case study of the magnetic storms in April 1997, Geophys. Res. Lett., 25, 3751–3754, 1998.

    Article  Google Scholar 

  • Ebihara, Y. and M. Ejiri, Simulation study on fundamental properties of the storm-time ring current, J. Geophys. Res., 105, 15,843–15,859, 2000.

    Article  Google Scholar 

  • Elman, J. L., Finding structure in time, Cognitive Sci., 14, 179, 1990.

    Article  Google Scholar 

  • Feldstein, Y. I., Modeling of the magnetic field of magnetospheric ring current as a function of interplanetary medium parameters, Space Sci. Rev., 59, 83–165, 1992.

    Article  Google Scholar 

  • Iyemori, T., H. Maeda, and T. Kamei, Impulse response of geomagnetic indices to interplanetary magnetic field, J. Geomag. Geoelectr., 31, 1–9, 1979.

    Article  Google Scholar 

  • Kamide, Y. and N. Fukushima, Analysis of magnetic storms with DR-indices for equatorial ring current field, Rep. Ionoshere Space Res. Japan, 25, 125–162, 1971.

    Google Scholar 

  • Klimas, A. J., D. Vassiliadis, and D. N. Baker, Data-derived analogues of the magnetospheric dynamics, J. Geophys. Res., 102, 26,993–27,009, 1997.

    Article  Google Scholar 

  • Klimas, A. J., D. Vassiliadis, and D. N. Baker, Dst index prediction using data-derived analogues of the magnetospheric dynamics, J. Geophys. Res., 103, 20,435–20,447, 1998.

    Article  Google Scholar 

  • Kugblenu, S., S. Taguchi, and T. Okuzawa, Prediction of the geomagnetic storm associated Dst index using an artificial NN algorithm, Earth Planet Sci., 51, 307–313, 1999.

    Google Scholar 

  • Lundstedt, H. and P. Wintoft, Prediction of geomagnetic storms from solar wind data with the use of a neural network, Ann. Geophys., 12, 19–24, 1994.

    Article  Google Scholar 

  • McComas, D. J., S. J. Bame, P. Barker, W. C. Feldman, J. L. Phillips, P. Riley, and J. W. Griffee, Solar wind electron proton alpha (SWEPAM) for the advanced composition explorer, Space Sci. Rev., 86, 563–612, 1998.

    Article  Google Scholar 

  • O’Brien, T. P. and R. L. McPherron, An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay, J. Geophys. Res., 105, 7707–7719, 2000.

    Article  Google Scholar 

  • Smith, C. W., J. L’Heureux, N. F. Ness, M. H. Acuna, L. F. Burlaga, and J. Scheifele, The ACE magnetic fields experiment, Space Sci. Rev., 86, 613–631, 1998.

    Article  Google Scholar 

  • Wu, J.-G. and H. Lundstedt, Geomagnetic storm predictions from solar wind data with the use of dynamic neural networks, J. Geophys. Res., 102, 14,255–14,268, 1997a.

    Article  Google Scholar 

  • Wu, J.-G. and H. Lundstedt, Neural network modeling of solar wind-magnetosphere interaction, J. Geophys. Res., 102, 14,457–14,466, 1997b.

    Article  Google Scholar 

  • Zwickl, R. D., K. A. Dogget, S. Sahm, W. P. Barrett, R. N. Grubb, T. R. Detman, V. J. Raben, C. W. Smith, P. Riley, R. E. Gold, R. A. Mewaldt, and T. Maruyama, The NOAA real-time solar-wind (RTSW) system using ACE data, Space Sci. Rev., 86, 633–648, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeaki Watanabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, S., Sagawa, E., Ohtaka, K. et al. Prediction of the Dst index from solar wind parameters by a neural network method. Earth Planet Sp 54, e1263–e1275 (2002). https://doi.org/10.1186/BF03352454

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352454

Keywords