Skip to main content

Petromagnetic properties in the Naica mining district, Chihuahua, Mexico: Searching for source of mineralization


Ore mineral and host lithologies have been sampled at 14 sites (89 oriented samples) in the Naica District, northern Mexico. The following properties were measured to characterise samples: saturation magnetization, high-temperature magnetic susceptibility, remanence intensity, Koenigsberger ratio, Curie temperature and hysteresis parameters. Rock magnetic properties seem to be controlled by variations in pyrrhotite, (titano)magnetite, (titano)hematite and (titano)maghemite content, and hydrothermal alteration. Post-mineralization hydrothermal alteration seems to be the major event that affected the minerals and magnetic properties. Continuous susceptibility measurements with temperature in most cases yield Curie points close to that of almost pure magnetite. Hysteresis curves and associated IRM (isothermal remanent magnetization) acquisition plots, however, in some cases points to the higher coercivity minerals. Hematite or a mixture of hematite-titanomagnetite-titanomaghemite are probably present in the Naica samples although their contribution in remanent magnetization is minor. Judging from the ratios of hysteresis parameters, it seems that all samples fall into the pseudo-single domain (PSD) grain size region. The Koenigsberger ratio (Q) was used as a measure of the relative contribution of remanent and induced magnetization into the magnetic anomalies. Q ranges from 0.05 to 34 and, generally, it is higher than 1, indicating the predominance of remanence over induced magnetism. The location and geometry of the magnetic source is shown as a single long subhorizontal body slightly inclined (20°) to the SE. This modelled body suggests an andine-type nature and emplacement of granitic magmas.


  • Alva-Valdivia, L. M., J. Urrutia-Fucugauchi, A. Goguichaichvili, and D. Dunlop, Magnetic mineralogy and properties of the Pena Colorada iron ore deposit, Guerrero Terrane: implications for magnetometric modeling, J. South Am. Earth Sciences, 13(5), 415–428, 2000.

    Article  Google Scholar 

  • Alva-Valdivia, L. M., J. Urrutia-Fucugauchi, A. Goguitchaichvili, and W. Vivallo, Rock-magnetism and ore microscopy of magnetite-apatite ore deposit from Cerro de Mercado, Mexico, Earth Planets Space, 53, 181–192, 2001.

    Article  Google Scholar 

  • Bina, M. and L. Daly, Mineralogical change and self-reversed magnetization in pyrrhotite resulting from partial oxidation; geophysical implications, Phys. Earth Planet. Inter., 85, 83–99, 1994.

    Article  Google Scholar 

  • Criss, R. E. and D. E. Champion, Magnetic properties of granitic rocks from the southern half of the Idaho batholith: Influences of hydrothermal alteration and implications for aeromagnetic interpretation, J. Geophys. Res., 89(B8), 7061–7076, 1984.

    Article  Google Scholar 

  • Damon, P., M. Shafiqullah, and K. F. Clark, Age trends of igneous activity in relations to metallogenesis in the southern cordillera, in Relations of Tectonics to Ore Deposits in the Southern Cordillera, edited by E. R. Dickinson and W. D. Payne, Arizona Geol. Soc. 14, 137–154, 1981.

  • Day, R., M. Fuller, and V. A. Schmidt, Hysteresis properties of titanomagnetites: grain size and compositional dependence, Phys. Earth Planet. Inter., 13, 260–267, 1977.

    Article  Google Scholar 

  • Duarte, E. A., Geología de yacimientos minerales en el distrito de Naica, Estado de Chihuahua, AM. Inst. Min. Metal. Petrol. Eng., 43–59, 1972.

  • Dunlop, D. and Ö. Özdemir, Rock-Magnetism, Fundamentals and Frontiers, Cambridge Univ. Press, 573 pp., 1997.

  • Erwood, R. J., S. E. Kesler, and P. L. Cloke, Compositionally distinct, saline hydrothermal solutions, Naica Mine, Chihuahua, Mexico, Econ. Geol., 74, 95–108, 1979.

    Article  Google Scholar 

  • Franco-Rubio, M., Estratigrafia del Albiano-Cenomaniano en la region de Naica, Chihuahua, Rev. Inst. Geol., 2, 132–149, 1978.

    Google Scholar 

  • Goguitchaichvili, A. and M. Prévot, Magnetism of oriented single crystals of hemo-ilmenite showing self-reversal of thermoremanent magnetization, J. Geophys. Res., 105, 2761–2781, 2000.

    Article  Google Scholar 

  • Haynes, F. M. and S. E. Kesler, Compositions and sources of mineralizing fluids for chimney and manto limestone-replacement ores in Mexico, Econ. Geol., 83, 1985–1992, 1988.

    Article  Google Scholar 

  • Hunt, C. P., B. M. Moskowitz, and S. K. Banerjee, Magnetic properties of rocks and minerals, in Rock Physics and Phase Relations: A Handbook of Physical Constants, edited by T. J. Ahrens, AGU Reference Shelf 3, 1995.

  • Ketola, M., M. Limatainen, and T. Ahokas, Application of petrophysics to sulphide ore prospecting in Finland, Pure Appl. Geophys., 114, 215–234, 1976.

    Article  Google Scholar 

  • Petersen, N., P. Eisenach, and U. Bleil, Low temperature alteration of magnetic minerals in ocean floor basalts, Deep drilling results in the Atlantic Ocean: Ocean Crust, American, 1979.

    Book  Google Scholar 

  • Prévot, M., R. S. Mainkinen, S. Grommé, and A. Lecaille, High paleointensity of the geomagnetic field from thermomagnetic studies on rift valley pillow basalts from the middle Atlantic ridge, J. Geophys. Res., 88, 2316–2326, 1983.

    Article  Google Scholar 

  • Querol, F. and G. Trigos, Ore mineralogy of the Naica Mine, Saucillo county, state of Chihuahua, in VI Excursion Geologica al Cenozoico de Chihuahua, Conferencia Internacional de Mineria Chihuahua-Batopilas del 6 al 9 de Octubre de 1996, 1996.

  • Raisz, E., Land forms of Mexico. Cambridge Mass, Map with text, scale 1:3,000,000, 1959.

  • Smith, G. M. and S. K. Banerjee, Magnetic structure of the upper kilometers of the marine crust at Deep Sea Drilling Project hole 504B, Eastern Pacific Ocean, J. Geophys. Res., 91, 10337–10354, 1986.

    Article  Google Scholar 

  • Stacey, F. D. and S. K. Banerjee, Physical properties of rock magnetism. Developments of Solid Earth Geophysics, 5, Elsevier, N. Y., 1974.

    Google Scholar 

  • Stone, J. G., Ore genesis in the Naica district, Chihuahua, Mexico, Econ. Geol., 54, 1002–1034, 1959.

    Article  Google Scholar 

  • Talwani, M., Computation with the help of a digital computer of magnetic anomalies caused by bodies of arbitrary shape, Geophys., 20, 797–817, 1965.

    Article  Google Scholar 

  • Talwani, M. and J. R. Heirtzler, Computation of magnetic anomalies caused by two-dimensional bodies of arbitrary shape, in Computers in the Mineral Industries, Part 1, edited by G. A. Parks, Stanford Univ. Publ., Geological Sciences, 9, pp. 464–480, 1964.

  • Talwani, M., J. L. Worzel, and M. Landisman, Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone, J. Geophys. Res., 64, 49–59, 1959.

    Article  Google Scholar 

  • Tauxe, L., T. A. T. Mullender, and T. Pick, Pot-bellies, wasp-waists and superparamagnetism in magnetic hysteresis, J. Geophys. Res., 95, 12337–12350, 1996.

    Article  Google Scholar 

  • Ueno, H. and S. Tonouchi, Paleomagnetic evidence for the timing of formation of the Chichibu pyrometasomatic deposits, Japan. Econ. Geol., 82, 1723–1731, 1987.

    Article  Google Scholar 

  • Won, I. J. and M. Bevis, Computing the gravitational and magnetic anomalies due to a polygon: algorithms and Fortran subroutines, Geophys., 52, 232–238, 1987.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to L. M. Alva-Valdivia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alva-Valdivia, L.M., Goguitchaichvili, A. & Urrutia-Fucugauchi, J. Petromagnetic properties in the Naica mining district, Chihuahua, Mexico: Searching for source of mineralization. Earth Planet Sp 55, 19–31 (2003).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Magnetite
  • Hematite
  • Magnetic Anomaly
  • Hydrothermal Alteration
  • Magnetic Mineral