- Article
- Open access
- Published:
Planetary bow shocks: Asymptotic MHD Mach cones
Earth, Planets and Space volume 55, pages 33–38 (2003)
Abstract
A direct approach for determining the asymptotic MHD Mach cone is formulated and solved. An implicit analytical solution enables the calculation of the asymptotic downstream slope of MHD Mach cones at any clock angle for arbitrary M s , M a , and ϑ bv . The solution obtained includes all previously known symmetric cases. The elongation and shift of the asymptotic fast mode shock cross-section are studied for a wide range of upstream plasma parameters as well as its unusual ‘chopped’ shape under certain conditions. Our results may be useful for planetary shock modeling and MHD numerical codes verification.
References
Bennett, L., M. G. Kivelson, K. K. Khurana, L. A. Frank, and W. R. Paterson, A model of the Earth’s distant bow shock, J. Geophys. Res., 102(A12), 26927–26941, 1997.
Grad, H., Reducible problems in magneto-fluid dynamic steady flows, Rev. of Modern Phys., 32(4), 830–847, 1960.
Jeffrey, A., Magnetohydrodynamics, Oliver & Boyd ltd. publ., Edinburg, 1966.
Kabin, K., A note on the compression ratio in MHD shocks, J. Plasma Physics, 66(4), 259–274, 2001.
Khurana, K. K. and M. G. Kivelson, A variable cross-section model of the bow shock of Venus, J. Geophys. Res., 99(A5), 8505–8512, 1994.
Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon publ., Oxford, 1984.
Peredo, M., J. A. Slavin, E. Mazur, and S. A. Curtis, Three-dimensional position and shape of the bow shock and their variation with Alfvenic, sonic and magnetosonic Mach numbers and interplanetary magnetic field orientation, J. Geophys. Res., 100, 7907–7916, 1995.
Petrinec, S. M. and C. T. Russell, Hydrodynamic and MHD equations across the bow shock and along the surfaces of planetary obstacles, Space Sci. Rev., 79, 757–791, 1997.
Slavin, J. A., R. E. Holzer, J. R. Spreiter, and S. S. Stahara, Planetary Mach cones: Theory and observation, J. Geophys. Res., 89(A5), 2708–2714, 1984.
Spreiter, J. R. and S. S. Stahara, Magnetohydrodynamic and gasdynamic theories for planetary bow waves, in Collisionless Shocks in the Heliosphere: Reviews of Current Research, edited by by B. T. Tsurutany and R. G. Stone, pp. 85–107, Geophysical Monograph series No. 35, AGU publ., Washington, D.C., 1985.
Spreiter, J. R., A. L. Summers, and A. Y. Alksne, Hydromagnetic flow around the magnetosphere, Planet. Space Sci., 14, 223–253, 1966.
Verigin, M. I., G. A. Kotova, A. P. Remizov, V. A. Styazhkin, N. M. Shutte, T.-L. Zhang, W. Riedler, H. Rosenbauer, K. Szego, M. Tatrallyay, and K. Schwingenschuh, Shape and location of planetary bow shocks, Cosmic Research, 37(1), 34–39, 1999.
Verigin, M., G. Kotova, A. Szabo, J. Slavin, T. Gombosi, K. Kabin, F. Shugaev, and A. Kalinchenko, Wind observations of the terrestrial bow shock: 3-D shape and motion, Earth Planets Space, 53(10), 1001–1009, 2001.
Whitham, G. B., Linear and nonlinear waves, A Wiley-Interscience publ., New York, 1974.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Verigin, M., Slavin, J., Szabo, A. et al. Planetary bow shocks: Asymptotic MHD Mach cones. Earth Planet Sp 55, 33–38 (2003). https://doi.org/10.1186/BF03352460
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1186/BF03352460