Skip to main content

Testing hypotheses for the origin of steep slope of lunar size-frequency distribution for small craters

Abstract

The crater size-frequency distribution of lunar maria is characterized by the change in slope of the population between 0.3 and 4 km in crater diameter. The origin of the steep segment in the distribution is not well understood. Nonetheless, craters smaller than a few km in diameter are widely used to estimate the crater retention age for areas so small that the number of larger craters is statistically insufficient. Future missions to the moon, which will obtain high resolution images, will provide a new, large data set of small craters. Thus it is important to review current hypotheses for their distributions before future missions are launched. We examine previous and new arguments and data bearing on the admixture of endogenic and secondary craters, horizontal heterogeneity of the substratum, and the size-frequency distribution of the primary production function. The endogenic crater and heterogeneous substratum hypotheses are seen to have little evidence in their favor, and can be eliminated. The primary production hypothesis fails to explain a wide variation of the size-frequency distribution of Apollo panoramic photographs. The secondary craters are likely the major source of the steepening of the distribution. It is ambiguous, however, which primary craters can produce sufficiently numerous secondary craters. The regional variation of the size-frequency distributions shows that few large impacts produce enough secondary craters to affect the distributions in the surrounding area. We emphasize that a crater size-frequency distribution of small craters on the moon should not be taken as an indication of the surface age. More data obtained from future lunar missions should be viewed in this context, and continued to be examined for further insight into the possible formation mechanism for secondary craters.

References

  • Alexander, E. C., Jr., A. Bates, M. R. Coscio, Jr., J. C. Dragon, V. R. Murthy, R. O. Peping, and T. R. Venkatesan, K/Ar dating of lunar soils II, Proc. Lunar Sci. Conf. 7th, 625–648, 1976.

  • Alexander, E. C., Jr., M. R. Coscio, Jr., J. C. Dragon, R. O. Peping, and K. Saito, K/Ar dating of lunar soils III: Comparison of 39Ar–40Ar and conventional techniques; 12032 and the age of Copernicus, Proc. Lunar Sci. Conf. 8th, 2725–2740, 1977.

  • Basaltic Volcanism Study Project, Basaltic Volcanism on the Terrestrial Planets, 1286 pp., Pergamon, New York, 1981.

    Google Scholar 

  • Bogard, D. D., D. H. Garrison, D. S. McKay, and S. J. Wentworth, The age of Copernicus: New evidence for 800±15 million years (abstract), Lunar Planet. Sci., 23, 133–134, 1992.

    Google Scholar 

  • Budney, J. C. and P. G. Lucey, Basalt thickness in Mare Humorum: The crater excavation method, J. Geophys. Res., 103, 16855–16870, 1998.

    Article  Google Scholar 

  • Chapman, C. R. and W. B. McKinnon, Cratering of planetary satellites, in Satellites, edited by J. A. Burns and M. S. Matthews, pp. 492–580, Arizona University Press, Tucson, 1986.

    Google Scholar 

  • Chapman, C. R., J. A. Mosher, and G. Simmons, Lunar cratering and erosion from Orbiter 5 photographs, J. Geophy. Res., 75, 1445–1466, 1970.

    Article  Google Scholar 

  • Chapman, C. R., J. C. Aubele, W. J. Roberts, and J. A. Cutts, Sub-kilometer lunar craters: Origins, ages, processes of degradation, and implications for mare basalt petrogenesis (abstract), Lunar Planet. Sci., 10, 190–191, 1979.

    Google Scholar 

  • Chapman, C. R., J. Veverka, M. J. S. Belton, G. Neukum, and D. Morrison, Cratering on Gaspra, Icarus, 120, 231–245, 1996.

    Article  Google Scholar 

  • Crater Analysis Techniques Working Group, Standard techniques for presentation and analysis of crater size-frequency data, Icarus, 37, 467–474, 1979.

    Article  Google Scholar 

  • DeHon, R. A., Thickness of the western mare basalts, Proc. Lunar Planet. Sci. Conf. 10th, 2935–2955, 1979.

  • DeHon, R. A. and J. D. Waskom, Geologic structure of the eastern mare basins, Proc. Lunar Sci. Conf. 7th, 2729–2746, 1976.

  • Drozd, R. J., C. M. Hohenberg, C. J. Morgan, and C. E. Ralston, Cosmic ray exposure history at the Apollo 16 and other lunar sites: lunar surface dynamics, Geochim. Cosmochim. Acta, 38, 1625–1642, 1974.

    Article  Google Scholar 

  • Elphic, R. C., D. J. Lawrence, W. C. Feldman, B. L. Barraclough, S. Mauris, A. B. Binder, and P. G. Lucey, Lunar Fe and Ti abundances: Composition of Lunar Prospector and Clementine data, Science, 281, 1493–1496, 1998.

    Article  Google Scholar 

  • Feldman, W. C., B. L. Barraclough, S. Mauris, R. C. Elphic, D. J. Lawrence, D. R. Thomsen, and A. B. Binder, Major compositonal units of the Moon: The Lunar Prospector thermal and fast neutrons, Science, 281, 1489–1493, 1998a.

    Article  Google Scholar 

  • Feldman, W. C., S. Mauris, A. B. Binder, B. L. Barraclough, R. C. Elphic, and D. J. Lawrence, Fluxes of fast and epithermal neutrons from Lunar Prospector: Evidence for water ice at the lunar pole, Science, 281, 1496–1500, 1998b.

    Article  Google Scholar 

  • Gault, D. E., Saturation and equilibrium conditions for impact cratering on the lunar surface: Criteria and implications, Radio Sci., 5, 273–291, 1970.

    Article  Google Scholar 

  • Gault, D. E. and J. A. Wedekind, Experimental studies of oblique impact, Proc. Lunar Planet. Sci. Conf. 9th, 3843–3875, 1978.

  • Gillis, J. J. and P. D. Spudis, Geology of the Smythii and Marginis region of the Moon: Using integrated remotely sensed data, Science, 105, 4217–4233, 2000.

    Google Scholar 

  • Greeley, R., S. D. Kadel, D. A. Williams, L. R. Gaddis, J. W. Head, A. S. McEwen, S. Murchie, E. Nagel, G. Neukum, C. M. Pieters, J. M. Sunshine, R. Wagner, and M. J. S. Belton, Galileo observation of lunar maria and related deposits, J. Geophys. Res., 98, 17183–17206, 1993.

    Article  Google Scholar 

  • Guinness, E. A. and R. E. Arvidson, On the constancy of the lunar cratering flux over the past 3.3 × 10 yr, Proc. Lunar Sci. Conf. 8th, 3475–3494, 1977.

  • Halekas, J. S., D. L. Mitchell, R. P. Lin, S. Frey, L. L. Hood, M. H. Acũna, and A. B. Binder, Mapping of crustal magnetic anomalies on the lunar near side by the Lunar Prospector electron reflectometer, J. Geophys. Res., 106, 27841–27852, 2001.

    Article  Google Scholar 

  • Hartmann, W. K. and D. C. Berman, Elysium Planitia lava flows: Crater count choronology and geological implications, J. Geophys. Res., 105, 15011–15025, 2000.

    Article  Google Scholar 

  • Hartmann, W. K. and R. W. Gaskel, Planetary cratering 2: Studies of saturation equilibrium, Meteorit. Planet. Sci., 32, 109–121, 1997.

    Article  Google Scholar 

  • Hartmann, W. K., M. Malin, A. McEwen, M. Carr, L. Soderblom, P. Thomas, E. Danielson, P. James, and J. Veverka, Evidence for recent volcanism on Mars from crater counts, Nature, 397, 586–589, 1999.

    Article  Google Scholar 

  • Head, J. W., J. B. Adams, T. B. McCord, C. M. Pieters, and S. H. Zisk, Regional stratigraphy and geologic history of Mare Crisium, in Mare crisium, the view from Luna 24: proceedings of the Conference on Luna 24, Houston, Texas, December 1–3, 1977/compiled by Lunar and Planetary Institute (Geochimica et Cosmochimica Acta. suppl. 9), pp. 43–74, Pergamon, New York, 1978.

    Google Scholar 

  • Hiesinger, H., J. W. Head, U. Wolf, and G. Neukum, Lunar mare basalts in Oceanus Procellarum: Initial results on age and composition (abstract), Lunar Planet. Sci. (CD-ROM), 31, #1278, 2000a.

  • Hiesinger, H., R. Jaumann, G. Neukum, and J. W. Head, Ages of mare basalts on the lunar nearside, J. Geophys. Res., 105, 29239–29275, 2000b.

    Article  Google Scholar 

  • Konopliv, A. S. and D. N. Yuan, Lunar Prospector 100th degree gravity model development (abstract), Lunar Planet. Sci. (CD-ROM), 30, #1067, 1999.

    Google Scholar 

  • Konopliv, A. S., A. B. Binder, L. L. Hood, A. B. Kucinskas, W. L. Sjogren, and J. G. Williams, Improved gravity field of the moon from Lunar Prospector, Science, 281, 1476–1480, 1998.

    Article  Google Scholar 

  • Kuiper, G. P., R. G. Strom, and R. S. Le Poole, Interpretation of the Ranger records, in Ranger VIII and IX. part II. Experimenters’ Analyses and Interpretation, Jet Propulsion Lab Tech. Rep., 32–248, 1966.

    Google Scholar 

  • Lawrence, D. J., W. C. Feldman, B. L. Barraclough, A. B. Binder, R. C. Elphic, S. Mauris, and D. R. Thomsen, Global elemental maps of the Moon: The Lunar Prospector gamma-ray spectrometer, Science, 281, 1484–1489, 1998.

    Article  Google Scholar 

  • Lucchita, B. K., Crater clusters and light mantle at the Apollo 17 site: A result of secondary impact from Tycho, Icarus, 30, 80–96, 1977.

    Article  Google Scholar 

  • McEwen, A. S., J. M. Moore, and E. M. Shoemaker, The Phanerozoic impact cratering rate: Evidence from the farside of the Moon, J. Geophys. Res., 102, 9231–9242, 1997.

    Article  Google Scholar 

  • Melosh, H. J., Impact Cratering: A Geologic Process, 245 pp., Oxford University Press, New York, 1989.

    Google Scholar 

  • Mizutani, H., Lunar interior exploration by Japanese Lunar penetrator mission, Lunar-A, J. Phys. Earth, 43, 657–670, 1995.

    Article  Google Scholar 

  • Moore, H. J., Geologic map of the Aristarchus region of the Moon: USGS Map1-465, scale 1:1,000.000, 1965.

  • Neukum, G. and B. A. Ivanov, Crater size distributions and impact probabilities on Earth from lunar, terrestrial-planet, and asteroid cratering data, in Hazards Due to Comets and Asteroids, edited by T. Gehrels, pp. 359–416, Univ. of Arizona Press, Tucson, 1994.

    Google Scholar 

  • Neukum, G. and B. König, Dating of individual lunar craters, Proc Lunar Sci. Conf. 7th, 2867–2881, 1976.

  • Neukum, G. and D. U. Wise, Mars: A standard crater curve and possible new time scale, Science, 194, 1381–1387, 1976.

    Article  Google Scholar 

  • Neukum, G., B. König, and J. Arkani-Hamed, A study of lunar impact crater size-distributions, The Moon, 12, 201–229, 1975.

    Article  Google Scholar 

  • Pickering, G., J. M. Bull, and D. J. Sanderson, Sampling power-law distributions, Tectonophys., 248, 1–20, 1995.

    Article  Google Scholar 

  • Pieters, C. M., Mare basalt types on the front side of the moon: A summary of spectral reflectance data, Proc. Lunar Planet. Sci. Conf. 9th, 2825–2849, 1978.

  • Pieters, C. M., J. W. Head, T. B. McCord, J. B. Adams, and S. H. Zisk, Geochemical and geological units of Mare Humorum: Definition using remote sensing and lunar sample information, Proc. Lunar Sci. Conf. 6th, 2689–2710, 1975.

  • Pieters, C. M., J. W. Head, L. Gaddis, B. Jolliff, and M. Duke, Rock types of South Pole-Aitken basin and extent of basaltic volcanism, J. Geophys. Res., 106, 28001–28022, 2001.

    Article  Google Scholar 

  • Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C, 735 pp., Cambridge Univ. Press, Cambridge, 1988.

    Google Scholar 

  • Rabinowitz, D., E. Bowell, E. Shoemaker, and K. Muinonen, The population of Earth-crossing asteroids, in Hazards Due to Comets and Asteroids, edited by T. Gehrels, pp. 285–314, Univ. of Arizona Press, Tucson, 1994.

    Google Scholar 

  • Rajmon, D. and P. Spudis, Mixing of the mare regolith: A Clementine test (abstract), Lunar Planet. Sci. (CD-ROM), 31, #1372, 2001.

    Google Scholar 

  • Sasaki, S., Y. Iijima, K. Tanaka, M. Kato, M. Hashimoto, H. Mizutani, K. Tsuruda, and Y. Takizawa, Scientific research in the SELENE mission, paper IAF-99-Q.4.04, 50th International Astronautical Congress, Amsterdam, 42 October, 1999.

  • Schultz, P., R. Greeley, and D. Gault, Degradation of small mare surface features, Proc. Lunar Sci. Conf. 7th, 985–1003, 1976.

  • Schultz, P., R. Greeley, and D. Gault, Interpreting statistics of small craters, Proc. Lunar Sci. Conf. 8th, 3539–3564, 1977.

  • Shoemaker, E. M., Preliminary analysis of fine structure of the lunar surface in Mare Cognitum, in Ranger 7, part 2, Experimenters’ Analyses and Interpretations, JPL, Technical Report 32–700, 75–132, 1965.

  • Silver, L. T., U-Th-Pb isotope systems in Apollo 11 and 12 regolithic materials and a possible age for the Copernican impact, Eos Trans. AGU, 52, 534, 1971.

    Google Scholar 

  • Smith, D. E., M. T. Zuber, G. A. Neumann, and F. G. Lemoine, Topography of the Moon from the Clementine lidar, J. Geophys. Res., 102, 1591–1611, 1997.

    Article  Google Scholar 

  • Staid, M. I. and C. M. Pieters, Mineralogy of the last lunar basalts: Results from Clementine, J. Geophys. Res., 105, 27887–27900, 2001.

    Article  Google Scholar 

  • Strom, R. G., S. K. Croft, and N. G. Barlow, The Martian impact cratering record, in Mars, edited by H. H. Kieffer, B. M. Jakosky, C. W. Snyder, and M. S. Matthews, pp. 383–423, Arizona University Press, Tucson, 1992.

    Google Scholar 

  • Taylor, S. R., Planetary Science: A Lunar Perspective, 481 pp., Lunar and Planetary Institute, Houston, 1982.

    Google Scholar 

  • Veverka, J., P. C. Thomas, M. Robinson, S. Murchie, C. Chapman, M. Bell, A. Harch, W. J. Merline, J. F. Bell, B. Bussey, B. Carcich, A. Cheng, B. Clark, D. Domingue, D. Dunham, R. Farquhar, M. J. Gaffey, E. Hawkins, N. Izenberg, J. Joseph, R. Kirk, H. Li, P. Lucey, M. Malin, L. McFadden, J. K. Miller, W. M. Owen, C. Peterson, L. Prockter, J. Warren, D. Wellnitz, B. G. Williams, and D. K. Yeomans, Imaging of small-scale features on 433 Eros from NEAR: Evidence for a complex regolith, Science, 292, 484–488, 2001.

    Article  Google Scholar 

  • Weitz, C. M. and J. W. Head, Spectral properties of the Marius Hills volcanic complex and implications for the formation of lunar domes and cones, J. Geophys. Res., 104, 18933–18956, 1999.

    Article  Google Scholar 

  • Wieczorek, M. A. and R. J. Phillips, Potential anomalies on a sphere: Applications to the thickness of the lunar crust, J. Geophys. Res., 103, 1715–1724, 1998.

    Article  Google Scholar 

  • Whitford-Stark, J. L. and J. W. Head, Stratigraphy of Oceanus Procellarum basalts: Sources and styles of emplacement, J. Geophys. Res., 85, 6579–6609, 1980.

    Article  Google Scholar 

  • Wilhelms, D., V. Oberbeck, and H. Aggarwal, Size-frequency distribution of primary and secondary lunar impact craters, Proc. Lunar Sci. Conf. 9th, 3735–3762, 1978.

  • Wilhelms, D., J. McCauley, and N. Trask, The Geologic History of the Moon, 302 pp., USGS Professional Paper 1348, 1987.

  • Wolfe, E. W., B. K. Lucchitta, V. S. Reed, G. E. Ulrich, and A. G. Sanchez, Geology of the Taurus-Littrow valley floor, Proc. Lunar Sci. Conf. 6th, 2463–2482, 1975.

  • Yamamoto, S., Measurement of impact ejecta from regolith targets in oblique impacts, Icarus, 158, 87–97, 2002.

    Article  Google Scholar 

  • Yamamoto, S. and A. M. Nakamura, Velocity measurements of impact ejecta from regolith targets, Icarus, 128, 160–170, 1997.

    Article  Google Scholar 

  • Yingst, R. A. and J. W. Head, Volumes of lunar lava ponds in South Pole-Aitken and Orientale basins: Implications for eruption conditions, transport mechanism, and magma source regions, J. Geophys. Res., 102, 10909–10931, 1997.

    Article  Google Scholar 

  • Yingst, R. A. and J. W. Head, Geology of mare deposits in South Pole-Aitken basin as seen by Clementine UV/VIS data, J. Geophys. Res., 104, 18957–18979, 1999.

    Article  Google Scholar 

  • Young, R. A., Mare crater size-frequency distributions: Implications for relative surface ages and regolith development, Proc. Lunar Sci. Conf. 6th, 2645–2662, 1975.

  • Young, R. A., The lunar impact flux, radiometric age correlation, and dating of specific lunar features, Proc. Lunar Sci. Conf. 8th, 3457–3473, 1977.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Namiki.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Namiki, N., Honda, C. Testing hypotheses for the origin of steep slope of lunar size-frequency distribution for small craters. Earth Planet Sp 55, 39–51 (2003). https://doi.org/10.1186/BF03352461

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352461

Keywords

  • Lunar Orbiter
  • Lunar Planet
  • Crater Diameter
  • Small Crater
  • Lunar Prospector