Skip to main content

The global accretion rate of extraterrestrial materials in the last glacial period estimated from the abundance of micrometeorites in Antarctic glacier ice

Abstract

The accretion rate of micrometeorites in the last glacial period was estimated from the concentrations of micrometeorites in the blue ice around the Yamato Mts. in Antarctica. The samples from this study were collected from the five sampling points (M03, K02, K11, J09 and J10) in the blue ice. The blue ice was melted and filtered, and the micrometeorites were handpicked from the collected “glacial sands”. The weight of the micrometeorites in the blue ice was estimated from the abundance of recovered micrometeorites and the solar noble gas concentrations in the “residue” after handpicking. The age of the blue ice from the K area was estimated to be 27–33 kyr before present based on oxygen isotope data. The estimated accretion rate to the whole Earth ranges from 5300 × 103kg/a to 16000 × 103kg/a. However, the lower end of this range probably represents lower limits due to possible loss of solar noble gases during long residence in the glacier ice. Hence, we estimate that the accretion rate of micrometeorites 27–33 kyr before present to be in the range between (11000 ± 6600) × 103kg/a and (16000 ± 9100) × 103kg/a. These results, as well as the other estimates, suggest that the accretion rate of micrometeorites in the last glacial period was comparable to that in the present. Micrometeorite k]accretion rate k]Antarctica k]last glacial periods k]noble gas k]interplanetary dust particle

References

  1. Azuma, N., M. Nakawo, A. Higashi, and F. Nishio, Flow pattern near massif A in the Yamato bare ice field estimated from the structures and the mechanical properties of a shallow ice core, Mem. Natl Inst. Polar Res. Spec. Issue 39, 173–183, 1985.

  2. Bender, M., T. Sowers, M.-L. Dickson, J. Orchardo, P. Grootes, P. A. Mayewski, and D. A. Meese, Climate correlations between Greenland and Antarctica during the past 100,000 years, Nature, 372, 663–666, 1994.

    Article  Google Scholar 

  3. Benkert, J.-P., H. Baur, P. Signer, and R. Wieler, He, Ne, Ar from the solar wind and solar energetic particles in lunar ilmenites and pyroxenes, J. Geophys. Res., 98, 13147–131162, 1993.

    Article  Google Scholar 

  4. Bintanja, R., On the glaciological, meteorological, and climatological significance of Antarctic blue areas, Rev. Geophys., 37, 337–359, 1999.

    Article  Google Scholar 

  5. Bland, P. A., T. B. Smith, A. J. T. Jull, F. J. Berry, A. W. R. Bevan, S. Cloudt, and, C. T. Pillinger, The flux of meteorites to the Earth over the last 50000 years, Mon. Not. R. Astron. Soc., 283, 551–565, 1996.

    Article  Google Scholar 

  6. Caillon, N., J. P. Severinghaus, J.-M. Barnola, J. Chappellaz, J. Jouzel, and F. Parrenin, Eastimation of temperature change and of gas age-ice age difference, 108 kyr B.P., at Vostok, Antarctica, J. Geophys. Res., 106, 31893–31901, 2001.

    Article  Google Scholar 

  7. Cassidy, W., R. Harvey, J. Schutt, G. Delisle, and K. Yanai, The meteorite collection sites of Antarctica, Meteoritics, 27, 490–525, 1992.

    Article  Google Scholar 

  8. Cziczo, D. J., D. S. Thomson, and D. M. Murphy, Ablation, flux, and atmospheric implications of meteors inferred from stratospheric aerosol, Science, 291, 1772–1775, 2001.

    Article  Google Scholar 

  9. Eberhardt, P., J. Geiss, and N. Grögler, Further evidence of the origin of trapped gases in the meteorite Khor Temiki, J. Geophys. Res., 70, 4375–4378, 1965.

    Article  Google Scholar 

  10. Engrand, C. and M. Maurette, Carbonaceous micrometeorites from Antarctica, Meteoritics Planet. Sci., 33, 565–580, 1998.

    Article  Google Scholar 

  11. Eugster, O., Cosmic-ray production rates for 3He, 21Ne, 38Ar, 83Kr, and 126Xe in chondrites based on 81Kr-Kr exposure ages, Geochim. Cosmochim. Acta, 52, 1649–1662, 1988.

    Article  Google Scholar 

  12. Gounelle, M., M. Maurette, G. Kurat, and C. Hammer, Comparison of the 1998 “Cap-Prudhomme” and “Astrolabe” Antarctic micrometeorite collections with the 1996 “South Pole” collection: Preliminary implication, in Lunar Planet. Sci. XXX, Abstract #1564, Lunar and Planetary Institute, Houston (CD-ROM), 1999.

  13. Grün, E., H. A. Zook, H. Fechtig, and R. H. Giese, Collisional balance of the meteoritic complex, Icarus, 62, 244–272, 1985.

    Article  Google Scholar 

  14. Harvey, R. P. and M. Maurette, The origin and significance of cosmic dust from the Walcott Névé, Antarctica, Proc. Lunar Planet. Sci., 21, pp. 569–578, 1991.

    Google Scholar 

  15. Hunten, D. M., R. P. Turco, and O. B. Toon, Smoke and dust particles of meteoritic origin in the mesosphere and stratosphere, J. Atmos. Sci., 37, 1342–1356, 1980.

    Article  Google Scholar 

  16. Iwata, N. and N. Imae, Antarctic micrometeorite collection at a bare ice region near Syowa Station by JARE-41 in 2000, Antarct. Meteorite Res., 15, 25–37, 2002.

    Google Scholar 

  17. Koeberl, C. and E. H. Hagen, Extraterrestrial spherules in glacial sediment from the Transantarctic Mountains, Antarctica: Structure, mineralogy, and chemical composition, Geochim. Cosmochim. Acta, 53, 937–944, 1989.

    Article  Google Scholar 

  18. Lever, J. H., S. Taylor, and R. Harvey, A collector to retrieve micrometeorites from the South Pole water well, in Lunar Planet. Sci., XXVII, 747–748, Lunar and Planetary Institute, Houston, 1996.

    Google Scholar 

  19. Love, S. G. and D. E. Brownlee, A direct measurement of the terrestrial mass accretion rate of cosmic dust, Science, 262, 550–553, 1993.

    Article  Google Scholar 

  20. Machida, T., T. Nakazawa, H. Narita, Y. Fujii, S. Aoki, and O. Watanabe, Variations of the CO2, CH4 and N2O concentrations and δ13C of CO2 in the glacial period deduced from an Antarctic ice core, South Yamato, Proc. NIPR Sym. Polar Meteorol. Glaciol., 10, 55–65, 1996.

    Google Scholar 

  21. Maurette, M., C. Jéhanno, E. Robin, and C. Hammer, Characteristics and mass distribution of extraterrestrial dust from the Greenland ice cap, Nature, 328, 699–702, 1987.

    Article  Google Scholar 

  22. Maurette, M., C. Olinger, M. C. Michel-Levy, G. Kurat, M. Pourchet, F. Brändstatter, and M. Bourat-Denise, A collection of diverse micrometeorites recovered from 100 tonnes of Antarctic blue ice, Nature, 351, 44–46, 1991.

    Article  Google Scholar 

  23. Maurette, M., G. Immel, C. Hammer, R. Harvey, G. Kurat, and S. Taylor, Collection and curation of IDPs from the Greenland and Antarctic ice sheets, in Analysis of interplanetary dust, edited by M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer, and G. J. Flynn, pp. 277–289, American Institute of Physics, New York, 1994.

    Google Scholar 

  24. Maurette, M., J. Duprat, C. Engrand, M. Gounelle, G. Kurat, G. Matrajt, and A. Toppani, Accretion of neon, organics, CO2, nitrogen and water from large interplanetary dust particles on the early Earth, Planet. Space Sci., 48, 1117–1137, 2000.

    Article  Google Scholar 

  25. Murphy, D. M., D. S. Thomson, and M. J. Mahoney, In situ measurements of organics, meteoritic material, mercury, and other elements in aerosols at 5 to 19 kilometers, Science, 282, 1664–1669, 1998.

    Article  Google Scholar 

  26. Nakamura, T. and N. Takaoka, Solar-wind derived light noble gases in micrometeorites collected at the Dome Fuji Station: Characterization by stepped pyrolysis, Antarct. Meteorite Res., 13, 311–321, 2000.

    Google Scholar 

  27. Nakamura, T., N. Imae, I. Nakai, T. Noguchi, H. Yano, K. Terada, T. Murakami, T. Fukuoka, K. Nogami, H. Ohashi, W. Nozaki, M. Hashimoto, N. Kondo, H. Matsuzaki, O. Ichikawa, and R. Ohmori, Antarctic micrometeorites collected at the Dome Fuji Station, Antarct. Meteorite Res., 12, 183–198, 1999.

    Google Scholar 

  28. Nakawo, M., M. Nagoshi, and S. Mae, A stratigraphic record of an ice core from the Yamato meteorite ice field, Antarctica, Ann. Glaciol., 10, 126–129, 1988.

    Google Scholar 

  29. Nakazawa, T., T. Machida, K. Esumi, M. Tanaka, Y. Fujii, S. Aoki, and O. Watanabe, Measurements of CO2 and CH4 concentrations in air in a polar ice, J. Glaciol., 39, 209–215, 1993.

    Google Scholar 

  30. National Institute of Polar Research, Antarctica—east Queen Maud Land—Enderby Land Glaciological Folio, 1 pp., National Institute of Polar Research, Tokyo, 1997.

    Google Scholar 

  31. Nier, A. O. and J. Schlutter, The thermal history of interplanetary dust particles collected in the Earth’s stratosphere, Meteoritics, 28, 675–681, 1993.

    Article  Google Scholar 

  32. Nishibori, E. and M. Ishizaki, Meteoritic dust collected at Syowa Base, Ongul island, east coast of Lützow-Holm bay, Antarctica, Antarctic Record, 7, 35–38, 1959 (in Japanese with English abstract).

    Google Scholar 

  33. Noguchi, T., N. Imae, T. Nakamura, W. Nozaki, K. Terada, T. Mori, I. Nakai, N. Kondo, M. Sasaki, T. Murakami, T. Fukuoka, K. Nogami, R. Ohomori, and H. Ohashi, A consortium study of Antarctic micrometeorites recovered from the Dome Fuji station, Antarct. Meteorite Res., 13, 270–284, 2000.

    Google Scholar 

  34. Osawa, T. and K. Nagao, Noble gas compositions of Antarctic micrometeorites collected at the Dome Fuji station in 1996 and 1997, Meteorit. Planet. Sci., 37, 911–936, 2002.

    Article  Google Scholar 

  35. Ozima, M. and F. A. Podsek, Noble gas geochemistry, 286 pp., Cambridge University Press, Cambridge, 2002.

    Google Scholar 

  36. Parkin, D. W. and D. Tilles, Influx measurements of extraterrestrial material, Science, 159, 936–946, 1968.

    Article  Google Scholar 

  37. Petit, J. R., J. Jouzel, D. Raynaud, N. I. Barkov, J.-M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorious, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429–436, 1999.

    Article  Google Scholar 

  38. Peucker-Ehrenbrink, B., Accretion of extraterrestrial matter during the last 80 million years and its effect on the marine osmium isotope record, Geochim. Cosmochim. Acta, 60, 3187–3196, 1996.

    Article  Google Scholar 

  39. Peucker-Ehrenbrink, B. and G. Ravizza, The effects of sampling artifacts on cosmic dust flux estimates: A reevaluation of nonvolatile tracers (Os, Ir), Geochim. Cosmochim. Acta, 64, 1965–1970, 2000.

    Article  Google Scholar 

  40. Rasmussen, K. L., H. B. Clausen, and G. W. Kallemeyn, No iridium anomaly after the 1908 Tunguska impact: Evidence from a Greenland ice core, Meteoritics, 30, 634–638, 1995.

    Article  Google Scholar 

  41. Shima, M. and H. Yabuki, Study of the extraterrestrial material at Antarctica (I), Antarctic Record, 33, 53–64, 1968 (in Japanese with English abstract).

    Google Scholar 

  42. Takayanagi, M. and M. Ozima, Temporal variation of 3He/4He ratio recorded in deep-sea sediment cores, J. Geophys. Res., 92, 12531–12538, 1987.

    Article  Google Scholar 

  43. Taylor, S., J. H. Lever, and R. P. Harvey, Accretion rate of cosmic spherules measured at the South Pole, Nature, 392, 899–903, 1998.

    Article  Google Scholar 

  44. Taylor, S., J. H. Lever, and R. P. Harvey, Numbers, types, and compositions of an unbiased collection of cosmic spherules, Meteoritics Planet. Sci., 35, 651–666, 2000.

    Article  Google Scholar 

  45. Tazawa, Y. and Y. Fujii, New types of spherules from Antarctica: meteoritic impact origin?, Geophys. Res. Lett., 14, 1199–1202, 1987.

    Article  Google Scholar 

  46. Terada, K., T. Yada, H. Kojima, T. Noguchi, T. Nakamura, T. Murakami, H. Yano, W. Nozaki, Y. Nakamuta, N. Matsumoto, J. Kamata, T. Mori, I. Nakai, M. Sasaki, M. Itabashi, T. Setoyanagi, K. Nagao, T. Osawa, H. Hiyagon, S. Mizutani, T. Fukuoka, K. Nogami, R. Ohmori, and H. Ohashi, General characterization of Antarctic micrometeorites collected by the 39th Japanese Antarctic Research Expedition: Consortium studies of JARE AMMs (III), Antarct. Meteorite Res., 14, 89–107, 2001.

    Google Scholar 

  47. Watanabe, O., K. Kamiyama, H. Motoyama, Y. Fujii, H. Shoji, and K. Satow, The paleoclimate record in the ice core at Dome Fuji station, East Antarctica, Ann. Glaciol., 29, 176–178, 1999a.

    Article  Google Scholar 

  48. Watanabe, O., Y. Fujii, K. Kamiyama, H. Motoyama, T. Furukawa, M. Igarashi, M. Kohno, S. Kanamori, Y. Ageta, M. Nakawo, H. Tanaka, K. Satow, H. Shoji, K. Kawamura, S. Matoba, and W. Shimada, Basic analyses of Dome Fuji deep ice core part 1: Stable oxygen and hydrogen isotope ratios, major chemical compositions and dust concentration, Polar Meteorol. Glaciol., 13, 83–89, 1999b.

    Google Scholar 

  49. Wetherill, G. W., Where do the meteorites come from? A re-evaluation of the Earth-crossing Apollo objects as sources of chondritic meteorites, Geochim. Cosmochim. Acta, 40, 1297–1317, 1976.

    Article  Google Scholar 

  50. Wieler, R., H. Baur, J.-P. Benkert, A. Pedroni, and P. Signer, Noble gases in the meteorite Fayetteville and in lunar ilmenite originating from solar energetic particles (abstract), Lunar Planet. Sci., 18, 1080–1081, 1987.

    Google Scholar 

  51. Yada, T. and H. Kojima, The collection of micrometeorites collected in the Yamato Meteorite Ice Field of Antarctica in 1998, Antarct. Meteorite Res., 13, 9–18, 2000.

    Google Scholar 

  52. Yanai, K., Yamato-74 meteorites collection, Antarctica from November to December 1974, Mem. Natl. Inst. Polar Res., Spec. Issue 8, 1–37, 1978.

  53. Yiou, F. and G. M. Raisbeck, Cosmic spherules from an Antarctic ice core, Meteoritics, 22, 539–540, 1987.

    Google Scholar 

  54. Yiou, F., G. M. Raisbeck, and C. Jéhanno, Influx of cosmic spherules to the Earth during the last 10 years as deduced from concentrations in Antarctica ice cores, Meteoritics, 24, 344 (abstr.), 1989.

    Google Scholar 

  55. Zolensky, M. E., A. Pun, and K. L. Thomas, Titanium carbide and titania phases in Antarctic ice particles of probable extraterrestrial origin, Proc. 19th Lunar Planet. Sci. Conf., Lunar and Planetary Institute, Houston, pp. 505–511, 1989.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Toru Yada.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yada, T., Nakamura, T., Takaoka, N. et al. The global accretion rate of extraterrestrial materials in the last glacial period estimated from the abundance of micrometeorites in Antarctic glacier ice. Earth Planet Sp 56, 67–79 (2004). https://doi.org/10.1186/BF03352491

Download citation

Keywords

  • Accretion Rate
  • Solar Energetic Particle
  • Interplanetary Dust
  • Cryoconite Hole
  • Extraterrestrial Material