Skip to main content


Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The global accretion rate of extraterrestrial materials in the last glacial period estimated from the abundance of micrometeorites in Antarctic glacier ice

  • 482 Accesses

  • 53 Citations


The accretion rate of micrometeorites in the last glacial period was estimated from the concentrations of micrometeorites in the blue ice around the Yamato Mts. in Antarctica. The samples from this study were collected from the five sampling points (M03, K02, K11, J09 and J10) in the blue ice. The blue ice was melted and filtered, and the micrometeorites were handpicked from the collected “glacial sands”. The weight of the micrometeorites in the blue ice was estimated from the abundance of recovered micrometeorites and the solar noble gas concentrations in the “residue” after handpicking. The age of the blue ice from the K area was estimated to be 27–33 kyr before present based on oxygen isotope data. The estimated accretion rate to the whole Earth ranges from 5300 × 103kg/a to 16000 × 103kg/a. However, the lower end of this range probably represents lower limits due to possible loss of solar noble gases during long residence in the glacier ice. Hence, we estimate that the accretion rate of micrometeorites 27–33 kyr before present to be in the range between (11000 ± 6600) × 103kg/a and (16000 ± 9100) × 103kg/a. These results, as well as the other estimates, suggest that the accretion rate of micrometeorites in the last glacial period was comparable to that in the present. Micrometeorite k]accretion rate k]Antarctica k]last glacial periods k]noble gas k]interplanetary dust particle


  1. Azuma, N., M. Nakawo, A. Higashi, and F. Nishio, Flow pattern near massif A in the Yamato bare ice field estimated from the structures and the mechanical properties of a shallow ice core, Mem. Natl Inst. Polar Res. Spec. Issue 39, 173–183, 1985.

  2. Bender, M., T. Sowers, M.-L. Dickson, J. Orchardo, P. Grootes, P. A. Mayewski, and D. A. Meese, Climate correlations between Greenland and Antarctica during the past 100,000 years, Nature, 372, 663–666, 1994.

  3. Benkert, J.-P., H. Baur, P. Signer, and R. Wieler, He, Ne, Ar from the solar wind and solar energetic particles in lunar ilmenites and pyroxenes, J. Geophys. Res., 98, 13147–131162, 1993.

  4. Bintanja, R., On the glaciological, meteorological, and climatological significance of Antarctic blue areas, Rev. Geophys., 37, 337–359, 1999.

  5. Bland, P. A., T. B. Smith, A. J. T. Jull, F. J. Berry, A. W. R. Bevan, S. Cloudt, and, C. T. Pillinger, The flux of meteorites to the Earth over the last 50000 years, Mon. Not. R. Astron. Soc., 283, 551–565, 1996.

  6. Caillon, N., J. P. Severinghaus, J.-M. Barnola, J. Chappellaz, J. Jouzel, and F. Parrenin, Eastimation of temperature change and of gas age-ice age difference, 108 kyr B.P., at Vostok, Antarctica, J. Geophys. Res., 106, 31893–31901, 2001.

  7. Cassidy, W., R. Harvey, J. Schutt, G. Delisle, and K. Yanai, The meteorite collection sites of Antarctica, Meteoritics, 27, 490–525, 1992.

  8. Cziczo, D. J., D. S. Thomson, and D. M. Murphy, Ablation, flux, and atmospheric implications of meteors inferred from stratospheric aerosol, Science, 291, 1772–1775, 2001.

  9. Eberhardt, P., J. Geiss, and N. Grögler, Further evidence of the origin of trapped gases in the meteorite Khor Temiki, J. Geophys. Res., 70, 4375–4378, 1965.

  10. Engrand, C. and M. Maurette, Carbonaceous micrometeorites from Antarctica, Meteoritics Planet. Sci., 33, 565–580, 1998.

  11. Eugster, O., Cosmic-ray production rates for 3He, 21Ne, 38Ar, 83Kr, and 126Xe in chondrites based on 81Kr-Kr exposure ages, Geochim. Cosmochim. Acta, 52, 1649–1662, 1988.

  12. Gounelle, M., M. Maurette, G. Kurat, and C. Hammer, Comparison of the 1998 “Cap-Prudhomme” and “Astrolabe” Antarctic micrometeorite collections with the 1996 “South Pole” collection: Preliminary implication, in Lunar Planet. Sci. XXX, Abstract #1564, Lunar and Planetary Institute, Houston (CD-ROM), 1999.

  13. Grün, E., H. A. Zook, H. Fechtig, and R. H. Giese, Collisional balance of the meteoritic complex, Icarus, 62, 244–272, 1985.

  14. Harvey, R. P. and M. Maurette, The origin and significance of cosmic dust from the Walcott Névé, Antarctica, Proc. Lunar Planet. Sci., 21, pp. 569–578, 1991.

  15. Hunten, D. M., R. P. Turco, and O. B. Toon, Smoke and dust particles of meteoritic origin in the mesosphere and stratosphere, J. Atmos. Sci., 37, 1342–1356, 1980.

  16. Iwata, N. and N. Imae, Antarctic micrometeorite collection at a bare ice region near Syowa Station by JARE-41 in 2000, Antarct. Meteorite Res., 15, 25–37, 2002.

  17. Koeberl, C. and E. H. Hagen, Extraterrestrial spherules in glacial sediment from the Transantarctic Mountains, Antarctica: Structure, mineralogy, and chemical composition, Geochim. Cosmochim. Acta, 53, 937–944, 1989.

  18. Lever, J. H., S. Taylor, and R. Harvey, A collector to retrieve micrometeorites from the South Pole water well, in Lunar Planet. Sci., XXVII, 747–748, Lunar and Planetary Institute, Houston, 1996.

  19. Love, S. G. and D. E. Brownlee, A direct measurement of the terrestrial mass accretion rate of cosmic dust, Science, 262, 550–553, 1993.

  20. Machida, T., T. Nakazawa, H. Narita, Y. Fujii, S. Aoki, and O. Watanabe, Variations of the CO2, CH4 and N2O concentrations and δ13C of CO2 in the glacial period deduced from an Antarctic ice core, South Yamato, Proc. NIPR Sym. Polar Meteorol. Glaciol., 10, 55–65, 1996.

  21. Maurette, M., C. Jéhanno, E. Robin, and C. Hammer, Characteristics and mass distribution of extraterrestrial dust from the Greenland ice cap, Nature, 328, 699–702, 1987.

  22. Maurette, M., C. Olinger, M. C. Michel-Levy, G. Kurat, M. Pourchet, F. Brändstatter, and M. Bourat-Denise, A collection of diverse micrometeorites recovered from 100 tonnes of Antarctic blue ice, Nature, 351, 44–46, 1991.

  23. Maurette, M., G. Immel, C. Hammer, R. Harvey, G. Kurat, and S. Taylor, Collection and curation of IDPs from the Greenland and Antarctic ice sheets, in Analysis of interplanetary dust, edited by M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer, and G. J. Flynn, pp. 277–289, American Institute of Physics, New York, 1994.

  24. Maurette, M., J. Duprat, C. Engrand, M. Gounelle, G. Kurat, G. Matrajt, and A. Toppani, Accretion of neon, organics, CO2, nitrogen and water from large interplanetary dust particles on the early Earth, Planet. Space Sci., 48, 1117–1137, 2000.

  25. Murphy, D. M., D. S. Thomson, and M. J. Mahoney, In situ measurements of organics, meteoritic material, mercury, and other elements in aerosols at 5 to 19 kilometers, Science, 282, 1664–1669, 1998.

  26. Nakamura, T. and N. Takaoka, Solar-wind derived light noble gases in micrometeorites collected at the Dome Fuji Station: Characterization by stepped pyrolysis, Antarct. Meteorite Res., 13, 311–321, 2000.

  27. Nakamura, T., N. Imae, I. Nakai, T. Noguchi, H. Yano, K. Terada, T. Murakami, T. Fukuoka, K. Nogami, H. Ohashi, W. Nozaki, M. Hashimoto, N. Kondo, H. Matsuzaki, O. Ichikawa, and R. Ohmori, Antarctic micrometeorites collected at the Dome Fuji Station, Antarct. Meteorite Res., 12, 183–198, 1999.

  28. Nakawo, M., M. Nagoshi, and S. Mae, A stratigraphic record of an ice core from the Yamato meteorite ice field, Antarctica, Ann. Glaciol., 10, 126–129, 1988.

  29. Nakazawa, T., T. Machida, K. Esumi, M. Tanaka, Y. Fujii, S. Aoki, and O. Watanabe, Measurements of CO2 and CH4 concentrations in air in a polar ice, J. Glaciol., 39, 209–215, 1993.

  30. National Institute of Polar Research, Antarctica—east Queen Maud Land—Enderby Land Glaciological Folio, 1 pp., National Institute of Polar Research, Tokyo, 1997.

  31. Nier, A. O. and J. Schlutter, The thermal history of interplanetary dust particles collected in the Earth’s stratosphere, Meteoritics, 28, 675–681, 1993.

  32. Nishibori, E. and M. Ishizaki, Meteoritic dust collected at Syowa Base, Ongul island, east coast of Lützow-Holm bay, Antarctica, Antarctic Record, 7, 35–38, 1959 (in Japanese with English abstract).

  33. Noguchi, T., N. Imae, T. Nakamura, W. Nozaki, K. Terada, T. Mori, I. Nakai, N. Kondo, M. Sasaki, T. Murakami, T. Fukuoka, K. Nogami, R. Ohomori, and H. Ohashi, A consortium study of Antarctic micrometeorites recovered from the Dome Fuji station, Antarct. Meteorite Res., 13, 270–284, 2000.

  34. Osawa, T. and K. Nagao, Noble gas compositions of Antarctic micrometeorites collected at the Dome Fuji station in 1996 and 1997, Meteorit. Planet. Sci., 37, 911–936, 2002.

  35. Ozima, M. and F. A. Podsek, Noble gas geochemistry, 286 pp., Cambridge University Press, Cambridge, 2002.

  36. Parkin, D. W. and D. Tilles, Influx measurements of extraterrestrial material, Science, 159, 936–946, 1968.

  37. Petit, J. R., J. Jouzel, D. Raynaud, N. I. Barkov, J.-M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorious, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429–436, 1999.

  38. Peucker-Ehrenbrink, B., Accretion of extraterrestrial matter during the last 80 million years and its effect on the marine osmium isotope record, Geochim. Cosmochim. Acta, 60, 3187–3196, 1996.

  39. Peucker-Ehrenbrink, B. and G. Ravizza, The effects of sampling artifacts on cosmic dust flux estimates: A reevaluation of nonvolatile tracers (Os, Ir), Geochim. Cosmochim. Acta, 64, 1965–1970, 2000.

  40. Rasmussen, K. L., H. B. Clausen, and G. W. Kallemeyn, No iridium anomaly after the 1908 Tunguska impact: Evidence from a Greenland ice core, Meteoritics, 30, 634–638, 1995.

  41. Shima, M. and H. Yabuki, Study of the extraterrestrial material at Antarctica (I), Antarctic Record, 33, 53–64, 1968 (in Japanese with English abstract).

  42. Takayanagi, M. and M. Ozima, Temporal variation of 3He/4He ratio recorded in deep-sea sediment cores, J. Geophys. Res., 92, 12531–12538, 1987.

  43. Taylor, S., J. H. Lever, and R. P. Harvey, Accretion rate of cosmic spherules measured at the South Pole, Nature, 392, 899–903, 1998.

  44. Taylor, S., J. H. Lever, and R. P. Harvey, Numbers, types, and compositions of an unbiased collection of cosmic spherules, Meteoritics Planet. Sci., 35, 651–666, 2000.

  45. Tazawa, Y. and Y. Fujii, New types of spherules from Antarctica: meteoritic impact origin?, Geophys. Res. Lett., 14, 1199–1202, 1987.

  46. Terada, K., T. Yada, H. Kojima, T. Noguchi, T. Nakamura, T. Murakami, H. Yano, W. Nozaki, Y. Nakamuta, N. Matsumoto, J. Kamata, T. Mori, I. Nakai, M. Sasaki, M. Itabashi, T. Setoyanagi, K. Nagao, T. Osawa, H. Hiyagon, S. Mizutani, T. Fukuoka, K. Nogami, R. Ohmori, and H. Ohashi, General characterization of Antarctic micrometeorites collected by the 39th Japanese Antarctic Research Expedition: Consortium studies of JARE AMMs (III), Antarct. Meteorite Res., 14, 89–107, 2001.

  47. Watanabe, O., K. Kamiyama, H. Motoyama, Y. Fujii, H. Shoji, and K. Satow, The paleoclimate record in the ice core at Dome Fuji station, East Antarctica, Ann. Glaciol., 29, 176–178, 1999a.

  48. Watanabe, O., Y. Fujii, K. Kamiyama, H. Motoyama, T. Furukawa, M. Igarashi, M. Kohno, S. Kanamori, Y. Ageta, M. Nakawo, H. Tanaka, K. Satow, H. Shoji, K. Kawamura, S. Matoba, and W. Shimada, Basic analyses of Dome Fuji deep ice core part 1: Stable oxygen and hydrogen isotope ratios, major chemical compositions and dust concentration, Polar Meteorol. Glaciol., 13, 83–89, 1999b.

  49. Wetherill, G. W., Where do the meteorites come from? A re-evaluation of the Earth-crossing Apollo objects as sources of chondritic meteorites, Geochim. Cosmochim. Acta, 40, 1297–1317, 1976.

  50. Wieler, R., H. Baur, J.-P. Benkert, A. Pedroni, and P. Signer, Noble gases in the meteorite Fayetteville and in lunar ilmenite originating from solar energetic particles (abstract), Lunar Planet. Sci., 18, 1080–1081, 1987.

  51. Yada, T. and H. Kojima, The collection of micrometeorites collected in the Yamato Meteorite Ice Field of Antarctica in 1998, Antarct. Meteorite Res., 13, 9–18, 2000.

  52. Yanai, K., Yamato-74 meteorites collection, Antarctica from November to December 1974, Mem. Natl. Inst. Polar Res., Spec. Issue 8, 1–37, 1978.

  53. Yiou, F. and G. M. Raisbeck, Cosmic spherules from an Antarctic ice core, Meteoritics, 22, 539–540, 1987.

  54. Yiou, F., G. M. Raisbeck, and C. Jéhanno, Influx of cosmic spherules to the Earth during the last 10 years as deduced from concentrations in Antarctica ice cores, Meteoritics, 24, 344 (abstr.), 1989.

  55. Zolensky, M. E., A. Pun, and K. L. Thomas, Titanium carbide and titania phases in Antarctic ice particles of probable extraterrestrial origin, Proc. 19th Lunar Planet. Sci. Conf., Lunar and Planetary Institute, Houston, pp. 505–511, 1989.

Download references

Author information

Correspondence to Toru Yada.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yada, T., Nakamura, T., Takaoka, N. et al. The global accretion rate of extraterrestrial materials in the last glacial period estimated from the abundance of micrometeorites in Antarctic glacier ice. Earth Planet Sp 56, 67–79 (2004).

Download citation


  • Accretion Rate
  • Solar Energetic Particle
  • Interplanetary Dust
  • Cryoconite Hole
  • Extraterrestrial Material