Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Interplay of variable thermal conductivity and expansivity on the thermal structure of oceanic lithosphere II

Abstract

We have extended our previous analysis of the effects of constant vs. variable, i.e., pressure and temperature dependent thermal conductivity (k) and constant thermal expansivity (α) on the thermal structure of the oceanic lithosphere. We apply our analysis to the actual data set including information on the geoid slope. The heat flow and ocean floor depth data constrain the thermal expansivity (α ≈ 3 × 10−5 1/°C). Including geoid slope data may loosely constrain both the thermal expansivity and the thermal conductivity. The probable value of thermal conductivity is ≈3 W/m/°C for the constant k case and ≈4 W/m/°C (at ambient conditions) for the variable k case. These a and k are generally consistent with laboratory data of appropriate lithospheric materials. Our analysis supports the plate model with thin lithosphere and high bottom temperature, such as GDH1 (95 km; 1450°C). Variable k case requires slightly thinner and higher temperature lithosphere (≈85 km and ≈1500°C) and gives a slightly better fit to the geoid slope data.

References

  1. Cazenave, A., Thermal cooling of the lithosphere: constraints from geoid data, Earth Planet. Sci. Lett., 70, 395–406, 1984.

    Google Scholar 

  2. DeLaughter, J., S. Stein, and C. A. Stein, Extraction of a lithospheric cooling signal from oceanwide geoid data, Earth Planet. Sci. Lett., 174, 173–181, 1999.

    Article  Google Scholar 

  3. Doin, M. P. and L. Fleitout, Thermal evolution of the oceanic lithosphere, Earth Planet. Sci. Lett., 142, 121–136, 1996.

    Article  Google Scholar 

  4. Dumoulin, C., M.-P. Doin, and L. Fleitout, Numerical simulations of an oceanic lithosphere above a convective mantle, Phys. Earth Planet. Int., 125, 45–64, 2001.

    Article  Google Scholar 

  5. Fei, Y., Thermal expansion, in AGU Reference Shelf 2, Mineral Physics and Crystallography, A Handbook of Physical Constants, edited by T. J. Ahrens, pp. 29–44, American Geophysical Union, Washington D. C., 1995.

    Google Scholar 

  6. Hofmeister, A. M., Mantle values of thermal conductivity and the geotherm from phonon lifetimes, Science, 283, 1699–1706, 1999.

    Article  Google Scholar 

  7. Honda, S. and D. A. Yuen, Interplay of variable thermal conductivity and expansivity on the thermal structure of oceanic lithosphere, Geophys. Res. Lett., 28, 351–354, 2001.

    Article  Google Scholar 

  8. Kido, M. and T. Seno, Dynamic topography compared with residual depth anomalies in oceans and implications for age-depth curves, Geophys. Res. Lett., 21, 717–720, 1994.

    Article  Google Scholar 

  9. Kono, Y. and T. Yoshii, Numerical experiments on the thickening plate model, J. Phys. Earth., 23, 63–75, 1975.

    Article  Google Scholar 

  10. McKenzie, D., Some remarks on heat flow and gravity anomalies, J. Geophys. Res., 72, 6261–6273, 1967.

    Article  Google Scholar 

  11. McKenzie, D. and M. J. Bickle, The volume and compaction of melt generated by extension of the lithosphere, J. Petrol., 29, 625–679, 1988.

    Article  Google Scholar 

  12. Parsons, B. and J. G. Sclater, An analysis of the variation of ocean floor bathymetry and heat flow with age, J. Geophys. Res., 82, 803–827, 1977.

    Article  Google Scholar 

  13. Richardson, W. P., S. Stein, C. A. Stein, and M. T. Zuber, Geoid data and thermal structure of the oceanic lithosphere, Geophys. Res. Lett., 22, 1913–1916, 1995.

    Article  Google Scholar 

  14. Sclater, J. G., C. Jaupart, and D. Galson, The heat flow through oceanic and continental crust and the heat loss of the earth, Rev. Geophys. Space Phys., 18, 269–311, 1981.

    Article  Google Scholar 

  15. Stein, C. A. and S. Stein, A model for the global variation in oceanic depth and heat flow with lithospheric age, Nature, 359, 123–129, 1992.

    Article  Google Scholar 

  16. Turcotte, D. L. and E. R. Oxburgh, Finite amplitude convective cells and continental drift, J. Fluid Mech., 28, 29–42, 1967.

    Article  Google Scholar 

  17. Turcotte, D. L. and G. Schubert, Geodynamics: Applications of Continuum Physics to Geological Problems, pp. 450, John Wiley and Sons, New York, 1982.

    Google Scholar 

  18. Yanagawa, T., Influence of temperature-dependnet thermal conductivity on mantle convection, Ph.D. Thesis, Kyushu University, 2004.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Honda.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Honda, S., Yuen, D.A. Interplay of variable thermal conductivity and expansivity on the thermal structure of oceanic lithosphere II. Earth Planet Sp 56, e1–e4 (2004). https://doi.org/10.1186/BF03352493

Download citation

Key words

  • Thermal structure of oceanic lithosphere
  • thermal conductivity
  • thermal expansivity