Skip to main content

Elastodynamic response of an anisotropic medium due to a line-load

Abstract

Two-dimensional elastodynamic displacements and stresses for a monoclinic solid have been obtained in relatively simple form by the use of the eigenvalue method, following Laplace and Fourier transforms. The main aim of this paper is to present a straightforward analytical eigenvalue method for a monoclinic solid which avoids the cumbersome nature of the problem and is convenient for numerical computation. The use of matrix notation avoids unwieldy mathematical expressions. A particular case of normal line-load acting in an orthotropic solid is discussed in detail. The corresponding deformation in time-domain is obtained numerically. The variations of elastodynamic displacements and stresses for an anisotropic medium with the horizontal distance have been shown graphically. It has been found that anisotropy is affecting the trend of distribution curves significantly.

References

  • Achenbach, J. D., Wave Propagation in Elastic Solids, North-Holland-Elsevier, Amsterdam, 1973.

    Google Scholar 

  • Atanackovic, T. M. and A. Guran, Theory of Elasticity for Scientist and Engineers, Birkhauser Boston, 2000.

    Book  Google Scholar 

  • Bonafede, M. and E. Rivalta, The tensile dislocation problem in a layered elastic medium, Geophys. J. Int., 136, 341–356, 1999a.

    Article  Google Scholar 

  • Bonafede, M. and E. Rivalta, On tensile cracks close to and across the interface between two welded elastic half-spaces, Geophys. J. Int., 138, 410–434, 1999b.

    Article  Google Scholar 

  • Buchwald, V. T., Elastic waves in anisotropic media, Proc. R. Soc. Lond., A253, 563–580, 1959.

    Article  Google Scholar 

  • Burridge, R., The singularity on the plane lids of the wave surface of elastic media with cubic symmetry, Q. J. Mech. Appl. Math., 20, 40–56, 1967.

    Article  Google Scholar 

  • Debnath, L. and Loknath, Integral Transforms and Their Application, CRC Press Inc., New York, 1995.

    Google Scholar 

  • Duff, G. F. D., The Cauchy problem for elastic waves in an anisotropic medium, Phil. Trans. R. Soc. Lond., A252, 249–273, 1960.

    Article  Google Scholar 

  • Garg, N. R., D. K. Madan, and R. K. Sharma, Two-dimensional deformation of an orthotropic elastic medium due to seismic sources, Phys. Earth Planet. Inter., 94, 43–62, 1996.

    Article  Google Scholar 

  • Garg, N. R., R. Kumar, A. Goel, and A. Miglani, Plane strain deformation of an orthotropic elastic medium using an eigenvalue approach, Earth Planets Space, 55(1), 2003.

    Google Scholar 

  • Hoing, G. and U. Hirdes, A method for the numerical inversion of the Laplace transform, J. Comp. Appl. Math., 10, 113–132, 1984.

    Article  Google Scholar 

  • Karabolis, D. L. and D. E. Beskos, Dynamic response of 3-D rigid surface foundations by time domain boundary element method, Earthquake Eng. Structure Dyn., 12, 73–93, 1984.

    Article  Google Scholar 

  • Lamb, H., On the propagation of tremors over the surface of an elastic solid, Phil. Trans. Roy. Soc. Am., 203, 1–42, 1904.

    Article  Google Scholar 

  • Lighthill, M. J., Studies on magneto-hydrodynamic waves and other anisotropic wave motions, Phil. Trans. R. Soc. Lond., A252, 397–430, 1960.

    Article  Google Scholar 

  • Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, Dover Publications, New York, 1944.

    Google Scholar 

  • Maruyama, T., On the force equivalents of dynamical elastic dislocations with reference to the earthquake mechanism, Bull. Earth. Res. Inst. (Tokyo), 41, 467–486, 1963.

    Google Scholar 

  • Maruyama, T., On two-dimensional elastic dislocations in an infinite and semi-infinite medium, Bull. Earthq. Res. Inst., 44, 811–871, 1966.

    Google Scholar 

  • Mase, G. T. and G. E. Mase, Continuum Mechanics for Engineers, CRC Press LLC., New York, 1999.

    Google Scholar 

  • Mura, T., Micromechanics of Defects in Solids, 2nd edition, Kluwer Academic Publishers, London, 1987.

    Book  Google Scholar 

  • Niwa, Y., T. Fukui, S. Kato, and K. Fujiki, An application of the integral equation method to two-dimensional elastodynamics, in Theoretical and Applied Mechanics, vol. 28, University of Tokyo Press, Tokyo, pp. 281–290, 1980.

    Google Scholar 

  • Okada, Y., Surface deformation due to inclined shear and tensile faults in a homogenous isotropic half space, Bull. Seismol. Soc. Am., 75, 1135–1154, 1985.

    Google Scholar 

  • Okada, Y., Internal deformation due to shear and tensile faults in a halfspace, Bull. Seismol. Soc. Am., 82, 1018–1040, 1992.

    Google Scholar 

  • Pan, E., Static response of a transversely istropic and layered half space to general dislocation sources, Phys. Earth Planet. Inter., 58, 103–117, 1989.

    Article  Google Scholar 

  • Payton, R. G., Elastic Wave Propogation in Transversely Isotropic Media, Matrtinus Nijhoff Publishers, The Hague, 1983.

    Book  Google Scholar 

  • Piersanti, A., G. Spada, R. Sabadini, and M. Bonafede, Global post-seismic deformation, Geophys. J. Int., 120, 544–566, 1995.

    Article  Google Scholar 

  • Press, W. H., S. A. Teukolsky, W. T. Velleling, and B. P. Flannery, Numerical Recipes in Fortran, Cambridge University Press, Cambridge, 1986.

    Google Scholar 

  • Ross, S. L., Differential Equations, 3rd edition, John Wiley and Sons Inc., 1984.

    Google Scholar 

  • Sneddon, I. N., Fourier Transforms, McGraw-Hill, New York, 1951.

    Google Scholar 

  • Stokes, G. G., On the dynamical theory of diffraction, Trans. Camb. Phil. Soc., 9, 1–62, 1849.

    Google Scholar 

  • Tverdokhlebov, A. and J. Rose, On Green’s function for elastic waves in anisotropic media, J. Acoust. Soc. Am., 83, 118–121, 1988.

    Article  Google Scholar 

  • Wang, C. Y. and J. D. Achenbach, A new look at 2-D time-domain elastodynamic Green’s functions for general anisotropic solids, Wave Motion, 16, 389–405, 1992.

    Article  Google Scholar 

  • Wang, C. Y. and J. D. Achenbach, A new method to obtain 3-D Green’s functions for anisotropic solids, Wave Motion, 18, 273–289, 1993.

    Article  Google Scholar 

  • Wang, C. Y. and J. D. Achenbach, Elastodynamic fundamental solutions for anisotropic solids, Geophys. J. Int., 118, 384–392, 1994.

    Article  Google Scholar 

  • Yeatts, F. R., Elastic radiation from a point source in an anisotropic medium, Phys. Rev. B, 29, 1674–1684, 1984.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Garg.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garg, N.R., Goel, A., Miglani, A. et al. Elastodynamic response of an anisotropic medium due to a line-load. Earth Planet Sp 56, 407–417 (2004). https://doi.org/10.1186/BF03352494

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352494

Key words

  • Monoclinic
  • orthotropic
  • eignevalue method
  • two-dimensional deformation integral transforms
  • elastodynamic