Skip to main content


You are viewing the new article page. Let us know what you think. Return to old version

Article | Open | Published:

A numerical simulation of a negative sudden impulse


A numerical experiment of magnetospheric response to a negative pressure impulse in the solar wind is carried out by using a MHD model of the solar wind-magnetosphere-ionosphere coupled system. The numerical simulation confirms mirror-image relationship of the ionospheric and magnetospheric signatures between the negative and positive impulses, which has been suggested by previous observations. The plasma processes associated with the negative impulse are again divided into the three phases—the preliminary impulse phase, and the first and second main impulse phases in terms of the ionosphere-magnetosphere coupling. The SC transient cell convection in the second main impulse phase is related to the Region 2 current in the case of the negative impulse. In the last, we discuss a possible model for the auroral brightening at the onset of the negative impulse.


  1. Araki, T., A physical model of the geomagnetic sudden commencement, in Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves, edited by M. J. Engebretson, K. Takahashi, and M. Scholer, pp. 183–200, American Geophysical Union, Washington, D.C., 1994.

  2. Araki, T. and H. Nagano, Geomagnetic response to sudden expansions of the magnetosphere, J. Geophys. Res., 93, 3983–3988, 1988.

  3. Chua, D., G. Parks, M. Brittnacher, W. Peria, G. Germany, J. Spann, and C. Carlson, Energy characteristics of auroral electron precipitation: A comparison of substorms and pressure related auroral activity, J. Geophys. Res., 106, 5945–5956, 2001.

  4. Fujita, S., M. Itonaga, A. Yoshikawa, H. Nakata, and T. Mizuta, A numerical simulation of the Pi2 pulsations associated with the substorm current wedge, J. Geophys. Res., 107(A3), 10.1029/2001JA000137, 2002.

  5. Fujita, S., T. Tanaka, T. Kikuchi, K. Fujimoto, K. Hosokawa, and M. Itonaga, A numerical simulation of the geomagnetic sudden commencement: 1. Generation of the field-aligned current associated with the preliminary impulse, J. Geophys. Res., 108(A12), 1416, doi:10.1029/2002JA009407, 2003a.

  6. Fujita, S., T. Tanaka, T. Kikuchi, K. Fujimoto, and M. Itonaga, A numerical simulation of the geomagnetic sudden commencement: 2. Plasma processes in the main impulse, J. Geophys. Res., 108(A12), 1417, doi:10.1029/2002JA009763, 2003b.

  7. Goertz, C. K. and R. W. Boswell, Magnetosphere-ionosphere coupling, J. Geophys. Res., 84, 7239–7246, 1979.

  8. Hasegawa, A., Particle acceleration by MHD surface wave and formation of aurora, J. Geophys. Res., 81, 5083–5090, 1976.

  9. Hasegawa, A. and L. Chen, Kinetic processes in plasma heating by resonant mode conversion of Alfven wave, Phys. Fluids, 19, 1924–1934, 1976.

  10. Hubert, B., J. C. Gerard, S. A. Fuselier, and S. B. Mende, Observation of dayside subauroral proton flashes with the IMAGE-FUV imagers, Geophys. Res. Lett., 30(3), 1145, doi:10.1029/2002GL016464, 2003.

  11. Iijima, T. and T. A. Potemra, Field-aligned currents in the dayside cusp observed by Triad, J. Geophys. Res., 81, 5971–5979, 1976.

  12. Keller, K. A., M. Hesse, M. Kuznetsova, L. Rastätter, T. Moretto, T. I. Gombosi, and D. L. DeZeeuw, Global MHD modeling of the impact of a solar wind pressure change, J. Geophys. Res., 107(A7), 10.1029/2001JA000060, 2002.

  13. Lee, D.-H. and M. L. Hudson, Numerical studies on the propagation of sudden impulses in the dipole magnetosphere. J. Geophys. Res., 106, 8435–8445, 2001.

  14. Lysak, R. L. and W. Lotko, On the kinetic dispersion relation for shear Alfvén waves, J. Geophys. Res., 101, 5085–5094, 1996.

  15. Meurant, M., J.-C. Gérard, B. Hubert, V. Coumans, C. Blockx, N. Østgaard, and S. B. Mende, Dynamics of global scale electron and proton precipitation induced by a solar wind pressure pulse, Geophys. Res. Lett., 30(20), 2032, doi:10.1029/2003GL018017, 2003.

  16. Sato, T. and H. Okuda, Numerical simulations on ion acoustic double layers, J. Geophys. Res., 86, 3357–3368, 1981.

  17. Sato, N., Y. Murata, H. Yamagishi, A. S. Yukimatsu, M. Kikuchi, M. Watanabe, K. Makita, H. Yang, R. Liu, and F. J. Rich, Enhancement of optical aurora triggered by the solar wind negative impulse (SI), Geophys. Res. Lett., 28, 127–130, 2001.

  18. Slinker, S. P., J. A. Fedder, W. J. Hughes, and J. G. Lyon, Response of the ionosphere to a density pulse in the solar wind: Simulation of travelling convection vortices, Geophys. Res. Lett., 26, 3,549–3,552, 1999.

  19. Takeuchi, T., T. Araki, H. Lühr, O. Rasmussenn, J. Watermann, D. K. Milling, I. R. Mann, K. Yumoto, K. Shiokawa, and T. Nagai, Geomagnetic negative sudden impulse due to a magnetic cloud observed on May 13, 1995, J. Geophys. Res., 105, 18,835–18,846, 2000.

  20. Takeuchi, T., T. Araki, A. Viljanen, and J. Watermann, Geomagnetic negative sudden impulses: Interplanetary causes and polarization distribution, J. Geophys. Res., 107(A07), 10.1029/2001JA900152, 2002.

  21. Tamao, T., The structure of three-dimensional hydromagnetic waves in a uniform cold plasma, J. Geomag. Geoelectr., 16, 89–114, 1964a.

  22. Tamao, T., A hydromagnetic interpretation of geomagnetic SSC*, Rep. Ionos. Space Res. Japan, 18, 16–31, 1964b.

  23. Tamao, T., Transmission and coupling resonance of hydromagnetic disturbances in the non-uniform Earth’s magnetosphere, Sci. Rep. Tohoku Univ., Series 5, Geophysics, 17, 43–72, 1965.

  24. Tanaka, T., Finite Volume TVD Scheme on an unstructured grid system for three-dimensional MHD simulation of inhomegeneous systems including strong background potential fields, J. Compt. Phys., 111, 381–389, 1994.

  25. Tanaka, T., Generation mechanisms for magnetosphere-ionosphere current systems deduced from a three-dimensional MHD simulation of the solar wind-magnetosphere-ionosphere coupling processes, J. Geophys. Res., 100, 12057–12074, 1995.

  26. Tanaka, T., Configuration of the magnetosphere-ionosphere convection system under northward IMF conditions with nonzero IMF By, J. Geophys. Res., 104, 14683–14690, 1999.

  27. Tanaka, T., The state transition model of the substorm onset, J. Geophys. Res., 105, 21081–21096, 2000a.

  28. Tanaka, T., Field-aligned current systems in the numerically simulated magnetosphere, in Magnetospheric Current Systems, edited by S.-I. Ohtani, R. Fujii, M. Hesse, and R. L. Lysak, p. 53, American Geophysical Union, Washington, D.C., 2000b.

  29. Yajima, A. and S. Machida, Electrostatic particle simulations of the WDL in the auroral plasma including the effects of up-flowing ions, Earth Planets Space, 53, 139–147, 2001.

  30. Zhou, X. and B. T. Tsurutani, Rapid intensification and propagation of the dayside aurora: Large scale interplanetary pressure pulses (fast shock), Geophys. Res. Lett., 26, 1097–1100, 1999.

  31. Zhou, X.-Y, R. J. Strangeway, P. C. Anderson, D. G. Sibeck, B. T. Tsurutani, G. Haerendel, H. U. Frey, and J. K. Arballo, Shock au-rora: FAST and DMSP observations, J. Geophys. Res., 108(A4), 8019, doi:10.1029/2002JA009701, 2003.

Download references

Author information

Correspondence to S. Fujita.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Key words

  • Negative SI
  • numerical simulation
  • magnetosphere-ionosphere coupling
  • connection
  • current system
  • solar wind impulse