Skip to main content

Advertisement

Nonlinear variability of SYM-H over two solar cycles

Article metrics

  • 191 Accesses

  • 13 Citations

Abstract

Fractal fluctuation analysis is applied to ground-based SYM-H data during quiet times and during magnetic storm times spanning two solar cycles between 1981–2002. On the basis of Kp, intervals were selected that corresponded to quiet and active magnetospheric dynamics. A nonlinear detrended fluctuation analysis (DFA) was applied to monitor nonlinear variability over the solar cycles. We find significant variations in nonlinear statistics between quiet and active intervals, which indicates a difference in statistical variability for quiet times, and storm times.

References

  1. Blok, H. J., On the nature of the stock market: Simulations and experiments, PhD thesis, University of British Columbia, Canada, 2000.

  2. Cannon, M. J., D. B. Percival, D. C. Caccia, G. M. Raymond, and J. B. Bassingthwaighte, the Evaluating scaled windowed variance methods for estimating the Hurst coefficient of time series, Physica A, 241, 606–626, 1997.

  3. Chen, Z., P. Ch. Ivanov, K. Hu, and H. E. Stanley, Effect of nonstationarities on detrended fluctuation analysis, Phys. Rev. E, 65, 041107, 2002.

  4. Gonzalez, W. D., J. A. Joselyn, Y. Kamide, H. W. Kroehl, G. Rostoker, B. T. Tsurutani, and V. N. Vasyliunas, What is a geomagnetic storm?, J. Geophys. Res., 99, 5771–5792, 1994.

  5. Higuchi, T., Approach to an irregular time series on the basis of the fractal theory, Physica D, 31, 277–283, 1988.

  6. Hu, K., P. Ch. Ivanov, Z. Chen, P. Carpena, and H. E. Stanley, Effect of trends on detrended fluctuation analysis, Phys. Rev. E, 64, 011114, 2001.

  7. Iyemori, T., T. Araki, T. Kamei, and M. Takeda, Mid-latitude Geomagnetic Indices “ASY” and “SYM” for 1999 (Provisional), online at http://swdcwww.kugi.kyoto-u.ac.jp/aeasy/asy.pdf, 1999.

  8. Kantelhardt, J. W., S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, Multifractal detrended fluctuation analysis of nonstationary time series, Physica A, 316, 87–114, 2002.

  9. Ohtani, S., T. Higuchi, A. T. Y. Lui, and K. Takahashi, Magnetic fluctuations associated with tail current disruption: Fractal analysis, J. Geophys. Res., 100, 19135–19145, 1995.

  10. Ohtani, S., K. Takahashi, T. Higuchi, A. T. Y. Lui, H. E. Spence, and J. F. Fennell, AMPTE/CCE-SCATHA simultaneous observations of substorm-associated magnetic fluctuations, J. Geophys. Res., 103(A3), 4671–4682, 1998.

  11. Peng, C.-K., S. Havlin, H. E. Stanley, A. L. Goldberger, Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat timeseries, Chaos, 5(1), 82–87, 1995.

  12. Price, C. P. and D. E. Newman, Using the R/S statistic to analyze AE data, J. Atmos. Solar-Terr. Phys., 63, 1387–1397, 2001.

  13. Rangarajan, G. K. and T. Iyemori, Time variations of geomagnetic activity indices Kp and Ap: an update, Ann. Geophysicae, 15, 1271–1290, 1997.

  14. Sharma, A. S., Assessing the magnetosphere’s nonlinear behaviour: Its dimension is low, its predictability is high, Rev. Geophys., 35, 645, 1995.

  15. Takalo, J., J. Timonen, A. Klimas, J. Valdivia, and D. Vassiliadis, Nonlinear energy dissipation in a cellular automaton magnetotail field model, Geophys. Res. Lett., 26, 1813–1816, 1999.

  16. Taqqu, M. S., V. Teverovsky, and W. Willinger, Estimators for long-range dependence: An empirical study, Fractals, 3, 185, 1996.

  17. Wanliss, J. A. and M. A. Reynolds, Measurement of the stochasticity of low-latitude geomagnetic temporal variations, Ann. Geophys., 21, 1–6, 2003.

Download references

Author information

Correspondence to J. A. Wanliss.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wanliss, J.A. Nonlinear variability of SYM-H over two solar cycles. Earth Planet Sp 56, e13–e16 (2004) doi:10.1186/BF03352507

Download citation

Key words

  • SYM-H
  • fractals
  • nonlinear
  • space weather
  • indices
  • geomagnetism
  • Dst
  • prediction