Skip to main content

Nonlinear variability of SYM-H over two solar cycles

Abstract

Fractal fluctuation analysis is applied to ground-based SYM-H data during quiet times and during magnetic storm times spanning two solar cycles between 1981–2002. On the basis of Kp, intervals were selected that corresponded to quiet and active magnetospheric dynamics. A nonlinear detrended fluctuation analysis (DFA) was applied to monitor nonlinear variability over the solar cycles. We find significant variations in nonlinear statistics between quiet and active intervals, which indicates a difference in statistical variability for quiet times, and storm times.

References

  • Blok, H. J., On the nature of the stock market: Simulations and experiments, PhD thesis, University of British Columbia, Canada, 2000.

    Google Scholar 

  • Cannon, M. J., D. B. Percival, D. C. Caccia, G. M. Raymond, and J. B. Bassingthwaighte, the Evaluating scaled windowed variance methods for estimating the Hurst coefficient of time series, Physica A, 241, 606–626, 1997.

    Article  Google Scholar 

  • Chen, Z., P. Ch. Ivanov, K. Hu, and H. E. Stanley, Effect of nonstationarities on detrended fluctuation analysis, Phys. Rev. E, 65, 041107, 2002.

    Article  Google Scholar 

  • Gonzalez, W. D., J. A. Joselyn, Y. Kamide, H. W. Kroehl, G. Rostoker, B. T. Tsurutani, and V. N. Vasyliunas, What is a geomagnetic storm?, J. Geophys. Res., 99, 5771–5792, 1994.

    Article  Google Scholar 

  • Higuchi, T., Approach to an irregular time series on the basis of the fractal theory, Physica D, 31, 277–283, 1988.

    Article  Google Scholar 

  • Hu, K., P. Ch. Ivanov, Z. Chen, P. Carpena, and H. E. Stanley, Effect of trends on detrended fluctuation analysis, Phys. Rev. E, 64, 011114, 2001.

    Article  Google Scholar 

  • Iyemori, T., T. Araki, T. Kamei, and M. Takeda, Mid-latitude Geomagnetic Indices “ASY” and “SYM” for 1999 (Provisional), online at http://swdcwww.kugi.kyoto-u.ac.jp/aeasy/asy.pdf, 1999.

    Google Scholar 

  • Kantelhardt, J. W., S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, Multifractal detrended fluctuation analysis of nonstationary time series, Physica A, 316, 87–114, 2002.

    Article  Google Scholar 

  • Ohtani, S., T. Higuchi, A. T. Y. Lui, and K. Takahashi, Magnetic fluctuations associated with tail current disruption: Fractal analysis, J. Geophys. Res., 100, 19135–19145, 1995.

    Article  Google Scholar 

  • Ohtani, S., K. Takahashi, T. Higuchi, A. T. Y. Lui, H. E. Spence, and J. F. Fennell, AMPTE/CCE-SCATHA simultaneous observations of substorm-associated magnetic fluctuations, J. Geophys. Res., 103(A3), 4671–4682, 1998.

    Article  Google Scholar 

  • Peng, C.-K., S. Havlin, H. E. Stanley, A. L. Goldberger, Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat timeseries, Chaos, 5(1), 82–87, 1995.

    Article  Google Scholar 

  • Price, C. P. and D. E. Newman, Using the R/S statistic to analyze AE data, J. Atmos. Solar-Terr. Phys., 63, 1387–1397, 2001.

    Article  Google Scholar 

  • Rangarajan, G. K. and T. Iyemori, Time variations of geomagnetic activity indices Kp and Ap: an update, Ann. Geophysicae, 15, 1271–1290, 1997.

    Article  Google Scholar 

  • Sharma, A. S., Assessing the magnetosphere’s nonlinear behaviour: Its dimension is low, its predictability is high, Rev. Geophys., 35, 645, 1995.

    Article  Google Scholar 

  • Takalo, J., J. Timonen, A. Klimas, J. Valdivia, and D. Vassiliadis, Nonlinear energy dissipation in a cellular automaton magnetotail field model, Geophys. Res. Lett., 26, 1813–1816, 1999.

    Article  Google Scholar 

  • Taqqu, M. S., V. Teverovsky, and W. Willinger, Estimators for long-range dependence: An empirical study, Fractals, 3, 185, 1996.

    Google Scholar 

  • Wanliss, J. A. and M. A. Reynolds, Measurement of the stochasticity of low-latitude geomagnetic temporal variations, Ann. Geophys., 21, 1–6, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Wanliss.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wanliss, J.A. Nonlinear variability of SYM-H over two solar cycles. Earth Planet Sp 56, e13–e16 (2004). https://doi.org/10.1186/BF03352507

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352507

Key words

  • SYM-H
  • fractals
  • nonlinear
  • space weather
  • indices
  • geomagnetism
  • Dst
  • prediction