Skip to main content


Chipping of cratons and breakup along mobile belts of a supercontinent

Article metrics

  • 335 Accesses

  • 8 Citations


Probably one of the most significant heterogeneities of a continental lithosphere is the noticeable difference in the thickness and properties of its cratonic and mobile parts. The trans-continental mobile belts (Paleoorogens/ paleo-sutures) represent a relatively thinner, warm, wet and weak lithosphere, which makes it more vulnerable to episodic mantle (or plume) upwellings and compressional forces. Here evidence is presented from the Indian continental lithosphere to show that these properties of mobile belts (MB) facilitate channeling of thermomagmatic fluxes (TMF) in both lateral as well as vertical directions. This, to a major extent, can account for the observed concentration (or focusing) of geophysical anomalies, tectonomagmatic features and strain along these MBs. In addition, a closer examination of the three continental breakups of Greater India since the Cretaceous reveals that the combination of a sufficiently weakened MB and mantle plume could become ‘fatal’ for the supercontinental stability. On the other hand, the thick (>200 km) or deep-rooted continental lithosphere beneath cratons is characterized by a relatively cold and dry lithosphere, which resists remobilization. From this relative impenetrability, TMFs are channeled mostly through the MBs following the long-term stability of the cratonic lithosphere. This difference in cratonic and MB regimes results in strongly heterogeneous thermal blanketing. However, in certain situations, the edge of a cratonic region may also get chipped-off following a number of thermotectonic rejuvenations of adjoining MBs—as exemplified by the breakup of the Antongil and Masora cratonic blocks (now lying on the Madagascar) from the Western Dharwar craton (India) during the India- Madagascar separation. From the study of supercontinental dispersals, it seems that the processes of breakup along pre-existing mobile belts may be globally applicable. This is, at times, also accompanied by chipping of cratons.


  1. Abbot, D. H., R. Drury, and W. D. Mooney, Continents as lithological icebergs: the importance of buoyant lithospheric roots, Earth Planet. Sci. Lett., 149, 15–27, 1997.

  2. Anil Kumar, K. Pande, T. R. Venkatesan, and Y. J. Bhaskar Rao, The Karnataka late Cretaceous dykes as products of the Marion hotspot at the Madagascar-India breakup event: evidence from 40Ar−39Ar geochronology and geochemistry, Geophys. Res. Lett., 28, 2715–2718, 2001.

  3. Anil Kumar, A.M. Dayal, and V. M. Padmakumari, Kimberlite from Rajmahal magmatic province: Sr-Nd-Pb isotopic evidence for Kerguelen plume derived magmas, Geophys. Res. Lett., 30, 18462–18465, 2003.

  4. Arora, B. R., P. Kaikkonen, M. V. Mahashabde, and S. Y. Waghmare, A non uniform thinsheet model for geomagnetic induction anomalies in central India, Physics of the Earth and Planet. Inter., 81, 201–213, 1993.

  5. Atchuta Rao, D., G. D. J. Sivakumar Sinha, and H. V. Ram Babu, Modelling of aeromagnetic anomaly and its implication on age of emplacement of ultramafic-mafic-alkaline complex at Jasra, Assam, Current Science, 66, 58–60, 1996.

  6. Baksi, A. K., Geochronological studies on whole-rock basalts, Deccan traps, India: evaluation of the timing of volcanism relative to the K-T boundary, Earth Planet. Sci. Lett., 121, 43–56, 1994.

  7. Baksi, A. K., Petrogenesis and timing of volcanism in the Rajmahal flood basalt province, northeastern India, Chemical Geology, 121, 73–90, 1995.

  8. Basu, A. R., P. R. Renne, D. K. Das Gupta, F. Teichmann, and R. J. Poreda, Early and late alkali igneous pulses and a high-3He plume origin for the Deccan flood basalts, Science, 261, 902–906, 1993.

  9. Biswas, S. K., Regional tectonic framework, structure and evolution of the western marginal basins of India, Tectonophysics, 134, 307–327, 1987.

  10. Bose, M. K., Alkaline magmatism in the Deccan volcanic province, J. Geol. Soc. India, 21, 317–329, 1980.

  11. Burke, K. and J. F. Dewey, Plume-generated triple junctions: Key indicators in applying plate tectonics to old rocks, J. Geology, 81, 406–433, 1973.

  12. Campbell, I. H. and R. W. Griffiths, Implications of mantle plume structure for the evolution of flood basalts, Earth Planet. Sci. Lett., 99, 79–93, 1990.

  13. Collins, A. S. and B. F. Windley, The tectonic evolution of central and northern Madagascar and its place in the final assembly of Gondwana, J. Geology, 110, 325–339, 2002.

  14. Collins, A., B. Windley, A. Kroner, I. Fitzsimons, and B. Hulscher, The tectonic architecture of central Madagascar: Implication on the evolution of the east African orogeny, Gondwana Research, 4, 152–153, 2001.

  15. Condie, K. C., Mantle Plumes and Their Record in Earth History, Cambridge Univ. Press, Cambridge, 2001.

  16. Courtillot, V., C. Jaupart, I. Manighetti, P. Tapponnier, and J. Besse, On causal links between flood basalts and continental breakup, Earth Planet. Sci. Lett., 166, 177–195, 1999.

  17. Courtillot, V., Y. Gallot, R. Rocchia, G. Ferand, E. Robin, C. Hofmann, N. Bhandari, and Z. G. Ghevariya, Cosmic markers, 40Ar/39Ar dating and paleomagnetism of the KT sections in the Anjar area of the Deccan large igneous province, Earth Planet. Sci. Lett., 182, 137–156, 2000.

  18. Crough, S. T., Hotspot epirogeny, Tectonophysics, 61, 321–333, 1979.

  19. Crough, S. T. Hotspot swells, Ann. Rev. Earth Planet. Sci., 11, 165–193, 1983.

  20. Dalziel, I. W. D., L. A. Lawver, and J. B. Murphy, Plumes, orogenesis, and supercontinental fragmentation, Earth planet. Sci. Lett., 178, 1–11, 2000.

  21. Davies, G. F., Dynamic Earth Plate, Plume and Mantle Convection, Cambridge Univ. Press, pp. 458, 1999.

  22. Dessai, A. G., Magma fractionation and mixing in Nephelinite plug association with Deccan magmatism at Murud-Janjira, south of Bombay, J. Geol. Soc. India, 43, 493–509, 1994.

  23. Dunbar, J. A. and D. S. Sawyer, How preexisting weaknesses control the style of continental breakup, J. Geophys. Res., 94, 7278–7292, 1989.

  24. Duncan, R. A., P. R. Hooper, J. Rehacak, J. S. Marsh, and A. R. Duncan, The timing and duration of the Karoo igneous event southern gondwana, J. Geophys. Res., 102, 18127–18138, 1997.

  25. Ebinger, C. J. and N. H. Sleep, Cenozoic magmatism throughout east Africa resulting from impact of a single plume, Nature, 395, 788–791, 1998.

  26. Ernst, R. E. and K. L. Buchan, Mantle plumes: Their identification through time, Geol. Soc. Am., Spl. Paper, 352, 593, 2001.

  27. Fourno, J. P., Contribution a letude de la discontinuite de Mohorovicic dapres les ondes sismiques observees a Madagascar, Annales Geophysicae, 5, 175–186, 1987.

  28. Gallagher, K. and C. Hawkesworth, Dehydration melting and the generation of continental flood basalts, Nature, 358, 57–59, 1992.

  29. Gautam Gupta, C. K. Rao, and S. G. Gokarn, Deep geoelectric structure in the Rohtak region using the magnetotelluric studies, J. Geol. Soc. India, 50, 697–708, 1997.

  30. Groenewald, P. B., G. H. Grantham, and M. K. Watkeys, Geological evidence for a Proterozoic to Mesozoic link between southeastern Africa and Dronning Maud land, Antarctica, J. Geol. Soc. London, 148, 1115–1123, 1991.

  31. Gupta, M. L., S. R. Sharma, and A. Sundar, Heatflow map of India, N. G. R. I. (unpublished), 1989.

  32. Gupta, S., S. S. Rai, K. S. Prakasam, D. Srinagesh, R. K. Chadha, K. Priestley, and V. K. Gaur, First evidence for anomalous thick crust beneath mid-Archaean western Dharwar craton, Current Science, 84, 1219–1226, 2003.

  33. Hoffman, A. W., Mantle geochemistry: the message from oceanic volcanism, Nature, 385, 219–229, 1997.

  34. Hyndman, R. D., Dipping seismic reflectors, electrically conductive zones and trapped water in the crust over a subducting plate, J. Geophys. Res., 93, 13391–13405, 1988.

  35. Kaila, K. L. and S. C. Bhatia, Gravity study along the Kavali-Udipi deep seismic sounding profile in the Indian peninsular shield: Some inferences about the origin of anorthosites and the eastern ghats orogeny, Tectonophysics, 79, 129–143, 1981.

  36. Kaila, K. L., H. C. Tewari, V. G. Krishna, M. M. Dixit, D. Sarkar, and M. S. Reddy, Deep seismic sounding studies in the north Cambay and Sanchor basins, India, Geophys. J. Int., 103, 621–637, 1990.

  37. Kaila, K. L., P. R. Reddy, D. M. Mall, N. Venkateswaralu, V. G. Krishna, and A. S. S. S. R. S. Prasad, Crustal structure of the West Bengal basin, India from Deep Seismic Sounding investigation, Geophys. J. Int., 111, 45–66, 1992.

  38. Kent, R., Lithospheric uplift in eastern Gondwana: Evidence for a long-lived mantle plume system?, Geology, 19, 19–23, 1991.

  39. Khattri, K. N., A. M. Roger, D. M. Perkin, and S. T. Algemlissen, A seismic hazard map of India and adjacent areas, Tectonophysics, 108, 93–134, 1987.

  40. Krishnamurthy, P. and G. R. Udas, Regional geological characteristics of the Deccan trap basalts and their genetic implications, Mem. Geol. Soc. India, 3, 394–418, 1981.

  41. Larson, R. L., Latest pulse of earth: Evidence for a mid-Cretaceous superplume, Geology, 19, 547–550, 1991a.

  42. Larson, R. L., Geological consequences of superplumes, Geology, 19, 963–966, 1991b.

  43. Lowman, J. P. and G. T. Jarvis, Effects of mantle heat source distribution on supercontinent stability, J. Geophys. Res., 104, 12733–12746, 1999.

  44. Mahoney, J. J., R. A. Duncan, W. Khan, E. Gnos, and G. R. McCormick, Cretaceous volcanic rocks of the south Tethyan suture zone, Pakistan: Implications for the Reunion hotspot and Deccan traps, Earth Planet. Sci. Lett., 203, 295–310, 2002.

  45. Mall, D. M., V. K. Rao, and P. R. Reddy, Deep subcrustal features in the Bengal basin: seismic signatures of plume activity, Geophys. Res. Lett., 26, 2545–2548, 1999.

  46. McKenzie, D., A possible mechanism for epirogenic uplift, Nature, 307, 616–618, 1984.

  47. Mishra, D. C., G. Laxman, M. B. S. V. Rao, and S. B. Gupta, Analysis of the gravity-magnetic data around Nagaur-Jhalawar geotransect, Mem. Geol. Soc. India, 31, 345–357, 1995.

  48. Mishra, D. C., D. V. Chandra Sekhar, D. Ch. Venkata Raju, and V. Vijaya Kumar, Crustal structure based on gravity-magnetic modelling constrained from seismic studies under Lambert rift, Antarctica and Godavari and Mahanadi rifts, India and their interrelationship, Earth Planet. Sci. Lett., 172, 287–300, 1999.

  49. Morgan, W. J., Convention in plumes in the lower mantle, Nature, 230, 42–43, 1971.

  50. Mukhopadhyay, M., Current seismicity in Northern Maharashtra and Southern Gujarat: Implications of Plume Tectonics, J. Geol. Soc. India, 60, 629–637, 2002.

  51. Naqvi, S. M. and J. J. W. Rogers, Precambrian Geology of India, Oxford University Press, New York, pp. 223, 1987.

  52. NGRI, Bouguer Gravity Anomaly Map of India. 1:5,000,000 Scale, 1975.

  53. Radhakrishna, B. P. and S. M. Naqvi, Precambrian continental crust of India and its evolution, J. Geology, 94, 145–166, 1986.

  54. Radhakrishna, T., H. Maluski, J. G. Mitchell, and M. Joseph, 40Ar/39Ar and K/Ar geochronology of the dykes from the south Indian granulite terrain, Tectonophysics, 304, 109–129, 1999.

  55. Rao, C. K., S. G. Gokarn, and B. P. Singh, Upper crustal structure in the Torni-Purnad region, central India using magnetotelluric studies, J. Geomag. Geoelectr., 47, 411–420, 1995.

  56. Rao, R. U. M. and R. Srinivasan, Geothermal regime and radioelemental distribution in the southern granulite terrane, Project completion Report submitted to DST, pp. 49, 2000.

  57. Rathore, S. S. and T. R. Venkatesan, 40Ar-39Ar Age of Essexite from Mundwara Alkaline Complex, S Rajasthan, India. Abstract, Fifth National Symposium on Mass Spectrometry, Ahmedabad, India, pp. EPS-II/I-II/3, 1991.

  58. Raval, U., On hotspots, Meso-Cenozoic tectonics and possible thermal networking beneath the Indian continent, Proc. of the Ind. Geophys. Union Seminar, Hyderabad, India, 314–330, 1989.

  59. Raval, U., Geodynamics of the tectonomagmatic and geophysical signatures within mobile parts of the transect, Mem. Geol. Soc. India, 31, 37–61, 1995.

  60. Raval, U., Use of interaction between mantle plume and a continental lithosphere in search of gold and diamonds, AEG Seminar abstract volume, held at Nagpur during 28–31 October, 1998.

  61. Raval, U. and K. Veeraswamy, Investigations on the electrical structures across and along the Narmada-Son lineament and its tectonic implications, Geological Survey of India Misc. Publ.63, 62–76, 1997.

  62. Raval, U. and K. Veeraswamy, The radial and linear modes of interaction between mantle plume and continental lithosphere: A case study from western India, J. Geol. Soc. India, 56, 525–536, 2000.

  63. Raval, U. and K. Veeraswamy, India-Madagascar separation: Breakup along pre-existing Mobile Belt and chipping of the craton, Gondwana Research, 6, 467–485, 2003.

  64. Ravikumar, M., J. Saul, D. Sarkar, R. Kind, and A. K. Shukla, Crustal structure of the Indian shield: New constraints from teleseismic receiver functions, Geophys. Res. Lett., 28, 1339–1342, 2001.

  65. Ravishanker, Heat-flow map of India and discussions on its geological and economic significance, Indian Minerals, 42, 89–110, 1988.

  66. Roy, A. B., The Phanerozoic reconstruction of Indian shield as the aftermath of breakup of the Gondwanaland, Gondwana Research, 7, 387–406, 2004.

  67. Sethna, S. F., Petrology and geochemistry of the acid, intermediate and alkaline rocks associated with the Deccan basalts in Gujarat and Maharashtra, Mem. Geol. Soc. India, 15, 47–61, 1989.

  68. Singh, A. P. and R. Meissner, Crustal configuration of the Narmada-Tapti region (India) from gravity studies, J. Geodynamics, 20, 111–127, 1995.

  69. Sivaraman, T. V. and U. Raval, U-Pb isotopic study of zircons from a few granitoids of Delhi-Aravalli belt, J. Geol. Soc. India, 46, 461–475, 1995.

  70. Sleep, N. H., Lateral flow of hot plume material ponded at sublithospheric depth, J. Geophys. Res., 101, 28065–28083, 1996.

  71. Srinagesh, D., Teleseismic tomographic evidence for contrasting crust and upper mantles beneath Archaean and Phanerozoic terrains in south India, Visakha Science J., 4, 97–105, 2000.

  72. Srivastava, R. K., Alkaline and peralkaline rocks of Rajasthan, Mem. Geol. Soc. India, 15, 3–24, 1989.

  73. Storey, B. C., The role of mantle plumes in continental breakup: case histories from Gondwanaland, Nature, 377, 301–308, 1995.

  74. Storey, M., J. J. Mahoney, A. D. Saunders, R. A. Duncan, S. P. Kelly, and M. F. Coffin, Timing of hotspot related volcanism and the breakup of Madagascar and India, Science, 262, 852–855, 1995.

  75. Subrahmanyam, N. P. and C. Leelanandam, Differentiation due to probable initial immiscibility in the Musala pluton of the Mundwara alkaline igneous complex, Rajasthan, India, Mem. Geol. Soc. India, 15, 25–46, 1989.

  76. Suryaprakasa Rao, G., Crustal seismic velocity structure from synthetic seismogram modeling of DSS record sections in the Saurashtra peninsula, Unpublished Ph.D. Thesis, Osmania University, pp. 133, 2003.

  77. Tewari, H. C., The effect of thin high velocity layers on seismic refraction data: An example from Mahanadi basin, India, Pageoph., 151, 63–79, 1998.

  78. Tewari, H. C., M. M. Dixit, D. Sarkar, and K. L. Kaila, A crustal density model across the Cambay basin, India, and its relationship with the Aravallis, Tectonophysics, 194, 123–130, 1991.

  79. Tewari, H. C., M. M. Dixit, N. Madhava Rao, N. Venkateswaralu, and V. Vijaya Rao, Crustal thickening under the Paleo-meso-Proterozoic Delhi fold belt in northwestern India: evidence from deep reflection profiling, Geophys. J. Int., 129, 657–668, 1997.

  80. Tewari, H. C., A. S. N. Murty, Prakash Kumar, and A. R. Sridhar, A tectonic model of the Narmada region, Current Science, 80, 873–878, 2001.

  81. Thybo, H., E. Perchuc, and S. Zhou, Intraplate earthquakes and a seismically defined lateral transition in the upper mantle, Geophys. Res. Lett., 27, 3953–3956, 2000.

  82. Tommasi, A. and A. Vauchez, Continental rifting parallel to ancient collisional belts: an effect of the mechanical anisotropy of the lithospheric mantle, Earth Planet. Sci. Lett., 185, 199–210, 2001.

  83. Tucker, R. D., L. D. Ashwal, and T. H. Torsvik, U-Pb geochronology of Seychelles granitoids: a neoproterozoic continental arc fragment, Earth Planet. Sci. Lett., 187, 27–38, 2001.

  84. Unrug, R., The assembly of Gondwanaland, Episodes, 19, 11–20, 1996.

  85. Vauchez, A., G. Barruol, and A. Tommasi, Why do continents break-up parallel to the ancient orogenic belts?, Terra Nova, 9, 62–66, 1997.

  86. Verma, R. K., Gravity Field, Seismicity and Tectonics of the Indian Peninsula and the Himalaya, D. Reidel Pub. Co., Dordrecht, pp. 213, 1985.

  87. White, R. and D. McKenzie, Magmatism at rift zones: The generation of volcanic continental margins and flood basalts, J. Geophys. Res., 94, 7685–7729, 1989.

  88. Wilson, J. T., A possible origin of Hawaian Islands, Canadian J. Physics, 41, 863–870, 1963.

  89. Wilson, M., Igneous Petrogenesis, Unwyn Hyman, London, 466 pp., 1989.

  90. Woollard, G. P., Regional variations in gravity, in The Nature of the Solid Earth, edited by E. C. Robertson, 463–505, 1972.

Download references

Author information

Correspondence to K. Veeraswamy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Veeraswamy, K., Raval, U. Chipping of cratons and breakup along mobile belts of a supercontinent. Earth Planet Sp 56, 491–500 (2004) doi:10.1186/BF03352508

Download citation

Key words

  • Supercontinental breakup
  • mobile belt
  • thermomagmatic flux
  • mantle plume
  • chipping and craton