Skip to main content

Scale similarity of MHD turbulence in the Earth’s core

Abstract

Turbulent motions in the core, being highly anisotropic because of the influence of the Earth’s rotation and its magnetic field, cause the eddy diffusion of large-scale fields much more effectively than the molecular diffusion. Reliable estimates of the eddy diffusivities, or the subgrid-scale fluxes, are therefore of significance. In this paper, scale similarity of magnetohydrodynamic turbulence in a rapidly rotating system is investigated to model subgrid-scale processes, as used in large-eddy simulations. The turbulent flux has been computed by taking an ensemble average of results of direct numerical simulations, which are to be employed in this paper, over the computational box which represents a small region in the Earth’s core. The anisotropy of turbulent flux computed after averaging over segments into which the box is divided remains unchanged even when the size of segments changes. Dependence of turbulent flux computed from fields to which a spatial filter is applied on its width indicates that subgrid-scale flux can be evaluated through extrapolation. This method will be useful for performing global geodynamo simulations taking into account subgrid-scale processes.

References

  • Bardina, J., J. H. Ferziger, and W. C. Reynolds, Improved subgrid scale models for large-eddy simulations, Am. Inst. Aeronaut. Astronaut., Paper 80-1357, 1980.

    Google Scholar 

  • Braginsky, S. I. and V. P. Meytlis, Local turbulence in the Earth’s core, Geophys. Astrophys. Fluid Dynam., 55, 71–87, 1990.

    Article  Google Scholar 

  • Buffett, B. A., A comparison of subgrid-scale models for large-eddy simulations of convection in the Earth’s core, Geophys. J. Int., 153, 753–765, 2003.

    Article  Google Scholar 

  • Christensen, U., P. Olson, and G. A. Glatzmaier, Numerical modelling of the geodynamo: a systematic parameter study, Geophys. J. Int., 138, 393–409, 1999.

    Article  Google Scholar 

  • Christensen, U. R., J. Aubert, P. Cardin, E. Dormy, S. Gibbons, G. A. Glatzmaier, E. Grote, Y. Honkura, C. Jones, M. Kono, M. Matsushima, A. Sakuraba, F. Takahashi, A. Tilgner, J. Wicht, and K. Zhang, A numerical dynamo benchmark, Phys. Earth Planet. Inter., 128, 25–34, 2001.

    Article  Google Scholar 

  • Domaradzki, J. A. and K.-C. Loh, The subgrid-scale estimation model in the physical space representation, Phys. Fluids, 11, 2330–2342, 1999.

    Article  Google Scholar 

  • Domaradzki, J. A. and E. M. Saiki, A subgrid-scale model based on the estimation of unresolved scales of turbulence, Phys. Fluids, 9, 2148–2164, 1997.

    Article  Google Scholar 

  • Germano, M., A proposal for a redefinition of the turbulent stresses in the filtered Navier-Stokes equations, Phys. Fluids, 29, 2323–2324, 1986.

    Article  Google Scholar 

  • Glatzmaier, G. A. and P. H. Roberts, A three-dimensional self-consistent computer simulation of a geomagnetic field reversal, Nature, 377, 203–209, 1995a.

    Article  Google Scholar 

  • Glatzmaier, G. A. and P. H. Roberts, A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle, Phys. Earth Planet. Inter., 91, 63–75, 1995b.

    Article  Google Scholar 

  • Horiuti, K., A new dynamic two-parameter mixed model for large-eddy simulation, Phys. Fluids, 9, 3443–3464, 1997.

    Article  Google Scholar 

  • Kageyama, A. and T. Sato, Generation mechanism of a dipole field by a magnetohydrodynamic dynamo, Phys. Rev. E, 55, 4617–4626, 1997.

    Article  Google Scholar 

  • Kageyama, A., T. Sato, and the Complexity Simulation Group, Computer simulation of a magnetohydrodynamic dynamo. II, Phys. Plasmas, 2, 1421–1431, 1995.

    Article  Google Scholar 

  • Kono, M. and P. H. Roberts, Recent geodynamo simulations and observations of the geomagnetic field, Rev. Geophys., 40, 1013, doi:10.1029/2000RG000102, 2002.

    Article  Google Scholar 

  • Matsushima, M., Expression of turbulent heat flux in the Earth’s core in terms of a second moment closure model, Phys. Earth Planet. Inter., 128, 137–148, 2001.

    Article  Google Scholar 

  • Matsushima, M., T. Nakajima, and P. H. Roberts, The anisotropy of local turbulence in the Earth’s core, Earth Planets Space, 51, 277–286, 1999.

    Article  Google Scholar 

  • Olson, P., U. Christensen, and G. A. Glatzmaier, Numerical modeling of the geodynamo: Mechanisms of field generation and equilibration, J. Geophys. Res., 104, 10,383–10,404, 1999.

    Article  Google Scholar 

  • Phillips, C. G. and D. J. Ivers, Spherical anisotropic diffusion models for the Earth’s core, Phys. Earth Planet. Inter., 117, 209–223, 2000.

    Article  Google Scholar 

  • Phillips, C. G. and D. J. Ivers, Spherical interactions of rapidly-rotating anisotropic turbulent viscous and thermal diffusion in the Earth’s core, Phys. Earth Planet. Inter., 128, 93–107, 2001.

    Article  Google Scholar 

  • Phillips, C. G. and D. J. Ivers, Strong field anisotropic diffusion models for the Earth’s core, Phys. Earth Planet. Inter., 140, 13–28, 2003.

    Article  Google Scholar 

  • Roberts, P. H. and G. A. Glatzmaier, Geodynamo theory and simulations, Rev. Mod. Phys., 72, 1081–1123, 2000.

    Article  Google Scholar 

  • St. Pierre, M. G., On the local nature of turbulence in Earth’s outer core, Geophys. Astrophys. Fluid Dynam., 83, 293–306, 1996.

    Article  Google Scholar 

  • Takahashi, F., J. S. Katayama, M. Matsushima, and Y. Honkura, Effects of boundary layers on magnetic field behavior in an MHD dynamo model, Phys. Earth Planet. Inter., 128, 149–161, 2001.

    Article  Google Scholar 

  • Zhang, K. and C. A. Jones, The effect of hyperviscosity on geodynamo models, Geophys. Res. Lett., 24, 2869–2872, 1997.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masaki Matsushima.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matsushima, M. Scale similarity of MHD turbulence in the Earth’s core. Earth Planet Sp 56, 599–605 (2004). https://doi.org/10.1186/BF03352520

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352520

Key words

  • MHD turbulence
  • Earth’s core
  • subgrid scale
  • scale similarity