Skip to main content
  • Article
  • Published:

Formulation and analytic calculation for the spin angular momentum of a moonlet due to inelastic collisions of ring particles

Abstract

Small moonlets embedded in planetary rings acquire spin angular momentum by inelastic collisions of a number of ring particles. We obtain analytic expressions for the mean and mean square spin angular momenta delivered to a moonlet in the high-velocity case where mutual gravity between the moonlet and particles can be neglected. We find that the mean angular momentum brought by a large number of small impacts would result in an equilibrium rotation of a moonlet in the prograde direction that is slower than the synchronous rotation, while large impacts would significantly affect the rotation when the mass of largest impactors is comparable to the moonlet’s mass and/or the velocity dispersion of particles is larger than the Kepler shear across the moonlet’s radius. We present a new formulation that allows a unified analysis of these two components of moonlet rotation, and confirmed the validity of this formulation and the above analytic calculations using N-body simulation.

References

  • Araki, S., The dynamics of particle disks. II. Effects of spin degrees of freedom, Icarus, 76, 182–198, 1988.

    Article  Google Scholar 

  • Araki, S., The dynamics of particle disks. III. Dense and spinning particle disks, Icarus, 90, 139–171, 1991.

    Article  Google Scholar 

  • Araki, S. and S. Tremaine, The dynamics of dense particle disks, Icarus, 65, 83–109, 1986.

    Article  Google Scholar 

  • Daisaka, H. and S. Ida, Spatial structure and coherent motion in dense planetary rings induced by self-gravitational instability, Earth Planets Space, 51, 1195–1213, 1999.

    Article  Google Scholar 

  • Dones, L. and S. Tremaine, Why does the Earth spin forward?, Science, 259, 350–354, 1993a.

    Article  Google Scholar 

  • Dones, L. and S. Tremaine, On the origin of planetary spins, Icarus, 103, 67–92, 1993b.

    Article  Google Scholar 

  • Giuli, R. T., On the rotation of the Earth produced by gravitational accretion of particles, Icarus, 8, 301–323, 1968.

    Article  Google Scholar 

  • Greenzweig, Y. and J. J. Lissauer, Accretion rates of protoplanets, Icarus, 87, 40–77, 1990.

    Article  Google Scholar 

  • Greenzweig, Y. and J. J. Lissauer, Accretion rates of protoplanets. II. Gaussian distribution of planetesimal velocities, Icarus, 100, 440–463, 1992.

    Article  Google Scholar 

  • Hanel, R., B. Conrath, F. M. Flasar, V. Kunde, W. Maguire, J. Pearl, J. Pirraglia, R. Samuelson, L. Herath, M. Allison, D. Cruikshank, D. Gautier, P. Gierasch, L. Horn, R. Koppany, and fPonnamperuma, Infrared observations of the Saturnian System from Voyager 1, Science, 212, 192–200, 1981.

    Article  Google Scholar 

  • Ida, S. and K. Nakazawa, Did rotation of the protoplanets originate from the successive collisions of planetesimals?, Icarus, 86, 561–573, 1990.

    Article  Google Scholar 

  • Lissauer, J. J. and D. M. Kary, The origin of the systematic component of planetary rotation. I. Planet on a circular orbit, Icarus, 94, 126–159, 1991.

    Article  Google Scholar 

  • Lissauer, J. J. and V. S. Safronov, The random component of planetary rotation, Icarus, 93, 288–297, 1991.

    Article  Google Scholar 

  • Lissauer, J. J., A. F. Berman, Y. Greenzweig, and D. M. Kary, Accretion of mass and spin angular momentum by a planet on an eccentric orbit, Icarus, 127, 65–92, 1997.

    Article  Google Scholar 

  • Lissauer, J. J., L. Dones, and K. Ohtsuki, Origin and evolution of terrestrial planet rotation, in Origin of the Earth and Moon, edited by R. M. Canup and K. Righter, pp. 101–112, University of Arizona Press, Tucson, 2000.

    Google Scholar 

  • Morishima, R. and H. Salo, Spin rates of small moonlets embedded in planetary rings: I. Three-body calculations, Icarus, 167, 330–346, 2004.

    Article  Google Scholar 

  • Nakazawa, K., S. Ida, and Y. Nakagawa, Collisional probability of planetesimals revolving in the solar gravitational field. I. Basic formulation, Astron. Astrophys., 220, 293–300, 1989.

    Google Scholar 

  • Ohtsuki, K., Equilibrium velocities in planetary rings with low optical depth, Icarus, 95, 265–282, 1992.

    Article  Google Scholar 

  • Ohtsuki, K., Capture probability of colliding planetesimals: Dynamical constraints on accretion of planets, satellites, and ring particles, Icarus, 106, 228–246, 1993.

    Article  Google Scholar 

  • Ohtsuki, K., Evolution of particle velocity dispersion in a circumplanetary disk due to inelastic collisions and gravitational interactions, Icarus, 137, 152–177, 1999.

    Article  Google Scholar 

  • Ohtsuki, K., On the rotation of a moonlet embedded in planetary rings, Icarus, 2004 (in press).

    Google Scholar 

  • Ohtsuki, K. and H. Emori, Local N-body simulations for the distribution and evolution of particle velocities in planetary rings, Astron. J., 119, 403–416, 2000.

    Article  Google Scholar 

  • Ohtsuki, K. and S. Ida, Planetary rotation by accretion of planetesimals with nonuniform spatial distribution formed by the planet’s gravitational perturbation, Icarus, 131, 393–420, 1998.

    Article  Google Scholar 

  • Salo, H., Collisional evolution of rotating, non-identical particles, Moon Planets, 38, 149–181, 1987a.

    Article  Google Scholar 

  • Salo, H., Numerical simulations of collisions between rotating particles, Icarus, 70, 37–51, 1987b.

    Article  Google Scholar 

  • Salo, H., Simulations of dense planetary rings. III. Self-gravitating identical particles, Icarus, 117, 287–312, 1995.

    Article  Google Scholar 

  • Spilker, L., C. Ferrari, M. R. Showalter, J. N. Cuzzi, R. Achterberg, J. Pearl, M. Flasar, V. Kunde, S. Edberg, B. Wallis, J. Aiello, S. Edgington, and Cassini CIRS Investigation Team, Cassini CIRS observations of Saturn’s rings, Bull. Amer. Astron. Soc., 34, 900, 2

    Google Scholar 

  • Tanikawa, K., S. Manabe, and R. Broucke, On the origin of the spin angular momentum by accretion of planetesimals: Property of collision orbits, Icarus, 79, 208–222, 1989.

    Article  Google Scholar 

  • Weidenschilling, S. J., C. R. Chapman, D. R. Davis, and R. Greenberg, Ring particles: Collisional interactions and physical nature, in Planetary Rings, edited by R. Greenberg and A. Brahic, pp. 367–415, University of Arizona Press, Tucson, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Ohtsuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohtsuki, K. Formulation and analytic calculation for the spin angular momentum of a moonlet due to inelastic collisions of ring particles. Earth Planet Sp 56, 909–919 (2004). https://doi.org/10.1186/BF03352538

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352538

Key words