- Article
- Published:
Influence of two major phase transitions on mantle convection with moving and subducting plates
Earth, Planets and Space volume 56, pages 1019–1033 (2004)
Abstract
A series of numerical simulation has been carried out to explore the influence of two major phase transitions at 410 km and 660 km phase boundaries on mantle convection with self-consistently moving and subducting plates, that is, on the “plate-like regime” of mantle convection. The degree of Clausius-Clapeyron slope at the 660 km phase boundary is systematically changed within the range estimated by high pressure experiments. On the plate-like regime where moving plates continuously subduct, as the Clausius-Clapeyron slope is steepened, the upwelling plumes originating from the bottom thermal boundary layer are less buoyant owing to the increase of average mantle temperature, so that the upwelling plumes are hard to penetrate through the 660 km phase boundary. Investigations reveal that three types of small upwelling plumes in the upper mantle are found on the plate-like regime: (1) The secondary plumes directly derived from the upwelling plumes from the lower mantle, (2) the passive upwellings from the shallow parts of the lower mantle due to the diffused return flow by continuously subducting plates, and (3) the secondary plumes originating from the 660 km phase boundary caused by the development of the small-scale convection cells confined in the upper mantle.
References
Akaogi, M. and E. Ito, Refinement of enthalpy measurement of Mg2SiO3 perovskite and negative pressure-temperature slopes for perovskiteforming reactions, Geophys. Res. Lett., 20, 1839–1842, 1993.
Akaogi, M., E. Ito, and A. Navrotsky, Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculations, and geophysical applications, J. Geophys. Res., 94, 15671–15685, 1989.
Allègre, C. J. and D. L. Turcotte, Geodynamic mixing in the mesosphere boundary layer and the origin of oceanic islands, Geophys. Res. Lett., 12, 207–210, 1985.
Bercovici, D., Generation of plate tectonics from lithosphere-mantle flow and void-volatile self-lubrication, Earth Planet. Sci. Lett., 154, 139–151, 1998.
Bijwaard, H. and W. Sparkmann, Tomographic evidence for a narrow whole mantle plume below Iceland, Earth Planet. Sci. Lett., 166, 121–126, 1999.
Bijwaard, H., W. Sparkmann, and E. R. Engdahl, Closing the gap between regional and global travel time tomography, J. Geophys. Res., 103, 30055–30078, 1998.
Bina, C. R. and G. Helffrich, Phase transition Clapeyron slopes and transition zone seismic discontinuity topography, J. Geophys. Res., 99, 15853–15860, 1994.
Braginsky, S. I. and P. H. Roberts, Equations governing convection in Earth’s core and the geodynamo, Geophys. Astrophys. Fluid Dyn., 79, 1–97, 1995.
Brunet, D. and P. Machetel, Large-scale tectonic features induced by mantle avalanches with phase, temperature, and pressure lateral variations of viscosity, J. Geophys. Res., 103, 4929–4945, 1998.
Brunet, D. and D. A. Yuen, Mantle plumes pinched in the transition zone, Earth Planet. Sci. Lett., 178, 13–27, 2000.
Buck, W. R., When does small-scale convection begin beneath oceanic lithosphere?, Nature, 313, 775–777, 1985.
Buffett, B. A., The thermal state of Earth’s core, Science, 299, 1675–1677, 2003.
Bunge, H.-P., M. A. Richards, and J. R. Baumgardner, A sensitivity study of three-dimensional spherical mantle convection at 108 Rayleigh number: Effects of depth-dependent viscosity, heating mode, and an endothermic phase change, J. Geophys. Res., 102, 11991–12007, 1997.
Chopelas, A., R. Boehler, and T. Ko, Thermodynamics of γ-Mg2SiO4 from Raman spectroscopy at high pressure: The Mg2SiO4 Phase diagram, Phys. Chem. Miner., 21, 351–359, 1994.
Christensen, U. R., Effects of phase transitions on mantle convection, Annu. Rev. Earth Planet. Sci., 23, 65–87, 1995.
Christensen, U. R. and D. A. Yuen, Layered convection induced by phase transitions, J. Geophys. Res., 90, 10291–10300, 1985.
Cserepes, L. and D. A. Yuen, Dynamical consequences of mid-mantle viscosity stratification on mantle flows with an endothermic phase transition, Geophys. Res. Lett., 24, 181–184, 1997.
Cserepes, L. and D. A. Yuen, On the possibility of a second kind of mantle plume, Earth Planet. Sci. Lett., 183, 61–71, 2000.
Cserepes, L., D. A. Yuen, and B. Schroeder, Effect of the mid-mantle viscosity and phase-transition structure on 3D mantle convection, Phys. Earth Planet. Int., 118, 135–148, 2000.
Davies, G. F., Ocean bathymetry and mantle convection. 1. Large-scale flow and hotspots, J. Geophys. Res., 93, 10467–10480, 1988.
Davies, G. F., Dynamic Earth: Plates, Plumes and Mantle Convection, Cambridge Univ. Press, pp. 458, Cambridge, U.K., 1999.
Davies, G. F. and M. A. Richards, Mantle convection, J. Geol., 100, 151–206, 1992.
Duncan, R. A. and M. A. Richards, Hotspot, mantle plumes, flood basalts, and true polar wander, Rev. Geophys., 29, 31–50, 1991.
Foulger, G. R. and D. G. Pearson, Is Iceland underlain by a plume in the lower mantle? Seismology and helium isotopes, Geophys. J. Int., 145, F1–F5, 2001.
Foulger, G. R., M. J. Pritchard, B. R. Julian, J. R. Evans, R. M. Allen, G. Nolet, W. J. Morgan, B. H. Bergsson, P. Erlendsson, S. Jakobsdottir, S. Ragnarsson, R. Stefansson, and K. Vogfjord, The seismic anomaly beneath Iceland extends down to the mantle transition zone and no deeper, Geophys. J. Int., 142, F1–F5, 2000.
Foulger, G. R., M. J. Pritchard, B. R. Julian, J. R. Evans, R. M. Allen, G. Nolet, W. J. Morgan, B. H. Bergsson, P. Erlendsson, S. Jakobsdottir, S. Ragnarsson, R. Stefansson, and K. Vogfjord, Seismic tomography shows that upwelling beneath Iceland is confined to the upper mantle, Geophys. J. Int., 146, 504–530, 2001.
Fukao, Y., S. Widiyantoro, and M. Obayashi, Stagnant slabs in the upper and lower mantle transition zone, Rev. Geophys., 39, 291–323, 2001.
Garnero, E. J., J. Revenaugh, Q. Williams, T. Lay, and L. H. Kellogg, Ultralow Velocity zone at the core-mantle boundary, in The Core-mantle Boundary Region, edited by, M. Gurnis, M. E. Wysession, E. Knittle and B. A. Buffett, volume 28 of Geodynamics series, Amer. Geophys. Union., Washington, DC., 1998.
Hill, R. I., I. H. Campbell, and G. F. Davies, Mantle plumes and continental tectonics, Science, 256, 186–193, 1992.
Hofmann, A. W., Mantle chemistry, the message from oceanic volcanism, Nature, 385, 219–229, 1997.
Honda, S., D. A. Yuen, S. Balachandar, and D. Reuteler, Threedimensional instabilities of mantle convection with multiple phase transitions, Science, 259, 1308–1311, 1993.
Ita, J. and S. D. King, Sensitivity of convection with an endothermic phase change to the form of the governing equations, initial conditions, boundary conditions, and equation of state, J. Geophys. Res., 99, 15919–15938, 1994.
Ito, E. and E. Takahashi, Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications, J. Geophys. Res., 94, 10637–10646, 1989.
Ito, E., M. Akaogi, L. Topor, and A. Navrotsky, Negative pressuretemperature slopes for reactions forming MgSiO3 perovskite from calorimetry, Science, 249, 1275–1278, 1990.
Katsura, T. and E. Ito, The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel, J. Geophys. Res., 94, 15663–15670, 1989.
Kido, M. and O. Č.adek, Inferences of viscosity from the oceanic geoid: Indication of a low viscosity zone below the 660-km discontinuity, Earth Planet. Sci. Lett., 151, 125–137, 1997.
Kido, M. and D. A. Yuen, The role played by a low viscosity zone under a 660 km discontinuity in regional mantle layering, Earth Planet. Sci. Lett., 181, 573–583, 2000.
Kido, M., D. A. Yuen, O. Cadek, and T. Nakakuki, Mantle viscosity derived by genetic algorithm using oceanic geoid and seismic tomography for whole-mantle versus blocked-flow situations, Phys. Earth Planet. Inter., 107, 307–326, 1998.
King, S. D. and J. J. Ita, Effect of Slab rheology on mass transport across a phase transition boundary, J. Geophys. Res., 100, 20,211–20,222, 1995.
King, S. D. and J. Ritsema, African hot spot volcanism: Small-scale convection in the upper mantle beneath cratons, Science, 290, 1137–1140, 2000.
Larson R. L., Latest pulse of Earth: Evidence for a mid-Cretaceous superplume, Geology, 19, 547–550, 1991.
Loper, D. E. and F. D. Stacey, The dynamical and thermal structure of deep mantle plumes, Phys. Earth Planet. Int., 33, 304–317, 1983.
Machetel, P. and P. Weber, Intermittent layered convection in a model mantle with an endothermic phase change at 670 km, Nature, 350, 55–57, 1991.
Malamud, B. D. and D. L. Turcotte, How many plumes are there?, Earth Planet. Sci. Lett., 174, 113–124, 1999.
Masters, G., H. Bolton, and G. Laske, Joint seismic tomography for p and s velocities: How pervasive are chemical anomalies in the mantle?, Eos. Trans. AGU, 80, Spring Meet. Suppl., S14, 1999.
McKenzie, D. and M. J. Bickle, The volume and composition of melt generated by extension of the lithosphere, J. Petrol., 29, 625–679, 1988.
McKenzie, D. P. and R. K. O’Nions, Mantle reservoirs and oceanic island basalts, Nature, 301, 229–231, 1983.
Mégnin, C. and B. Romanowicz, The three-dimensional shear velocity structure of the mantle from the inversion of body, surface and highermode waveforms, Geophys. J. Int., 143, 709–728, 2000.
Monnereau, M. and M. Rabinowicz, Is the 670 km phase transition able to layer the Earth’s convection in a mantle with depth-dependent viscosity?, Geophys. Res. Lett., 23, 1001–1004, 1996.
Morgan, W. J., Convection plumes in the lower mantle, Nature, 230, 42–43, 1971.
Morgan, W. J., Plate motions and deep mantle convection, Geol. Soc. Am. Man., 132, 7–22, 1972.
Nakakuki, T. and H. Fujimoto, Interaction of the upwelling plume with the phase and chemical boundaries—Effects of the pressure-dependent viscosity—, J. Geomag. Geoelectr., 46, 587–602, 1994.
Nakakuki, T., H. Sato, and H. Fujimoto, Interaction of the upwelling plume with the phase and chemical boundary at the 670 km discontinuity: Effects of temperature-dependent viscosity, Earth Planet. Sci. Lett., 121, 369–384, 1994.
Nataf, H.-C., Seismic imaging of mantle plumes, Annu. Rev. Earth Planet. Sci., 28, 391–417, 2000.
Ogawa, M., Plate-like regime of a numerically modeled thermal convection in a fluid with temperature-, pressure-, and stress-history-dependent viscosity, J. Geophys. Res., 108, 2067, doi:10.1029/2000JB000069, 2003.
Ogawa, M. and H. Nakamura, Thermochemical regime of the early mantle inferred from numerical models of the coupled magmatism-mantle convection system with the solid-solid phase transitions at depths around 660 km, J. Geophys. Res., 103, 12161–12180, 1998.
Ogawa, M., G. Schubert, and A. Zebib, Numerical simulation of threedimensional thermal convection in a fluid with strongly temperaturedependent viscosity. J. Fluid Mech., 233, 299–328, 1991.
Patankar, S. V., Heat Transfer and Fluid Flow, Taylor and Francis, pp. 197, Philadelphia, Pa., 1980.
Peltier, W. R., Postglacial variations in the level of the sea—implications for climate dynamics and solid-earth geophysics, Rev. Geophys., 36, 603–689, 1998.
Peltier, W. R. and L. P. Solheim, Mantle phase transitions and layered chaotic convection, Geophys. Res. Lett., 10, 321–324, 1992.
Pollack, H. N., S. J. Hurter, and J. R. Johnson, Heat flow from the Earth’s interior: Analysis of the global data set, Rev. Geophys., 31, 267–280, 1993.
Rhodes, M. and J. H. Davies, Tomographic imaging of multiple mantle plumes in the uppermost lower mantle, Geophys. J. Int., 147, 88–92, 2001.
Richter, F. M., Finite amplitude convection through a phase boundary, Geophys. J. R. Astron. Soc., 35, 265–276, 1973.
Richter, F. M. and B. Parsons, On the interaction of two scales of convection in the mantle, J. Geophys. Res., 80, 2529–2541, 1975.
Shen, Y., S. C. Solomon, I. T. Bjarnason, and C. J. Wolfe, Seismic evidence for a lower-mantle origin of the Iceland plume, Nature, 395, 62–65, 1998.
Sleep, N. H., Hotspots and mantle plumes: Some phenomenology, J. Geophys. Res., 95, 6715–6736, 1990.
Smolarkiewicz, P. K., A simple positive definite advection scheme with small implicit diffusion, Mon. Wea. Rev., 111, 479–486, 1983.
Smolarkiewicz, P. K., A fully multidimensional positive definite advection transport algorithm with small implicit diffusion, J. Comput. Phys., 54, 325–362, 1984.
Smolarkiewicz, P. K. and T. L. Clark, The multidimensional positive definite advection transport algorithm: Further development and applications, J. Comput. Phys., 67, 396–438, 1986.
Solheim, L. P. and W. R. Peltier, Avalanche effects in phase transition modulated thermal convection: A model of Earth’s mantle, J. Geophys. Res., 99, 6997–7018, 1994a.
Solheim, L. P. and W. R. Peltier, Phase boundary deflections at 660-km depth and episodically layered isochemical convection in the mantle, J. Geophys. Res., 99, 15861–15875, 1994b.
Solomatov, V. S., Scaling of temperature- and stress-dependent viscosity convection. Phys. Fluids, 7, 266–274, 1995.
Steinbach, V. and D. A. Yuen, Effects of depth-dependent properties on the thermal anomalies produced in flush instabilities from phase transitions, Phys. Earth Planet. Int., 86, 165–183, 1994.
Steinbach, V. and D. A. Yuen, The effects of temperature-dependent viscosity on mantle convection with the two major phase transitions, Phys. Earth Planet. Int., 90, 13–36, 1995.
Steinbach, V. and D. A. Yuen, Dynamical effects of a temperature- and pressure-dependent lower-mantle rheology on the interaction of upwellings with the transition zone, Phys. Earth Planet. Int., 103, 85–100, 1997.
Steinbach, V., D. A. Yuen, and W. Zhao, Instabilities from phase transitions and the timescales of mantle thermal evolution, Geophys. Res. Lett., 20, 1119–1122, 1993.
Su, W., R. L. Woodward, and A. M. Dziewonski, Degree 12 model of shear velocity heterogeneity in the mantle, J. Geophys. Res., 99, 6945–6980, 1994.
Tackley, P. J., Effects of strongly variable viscosity on three-dimensional compressible convection in planetary mantles, J. Geophys. Res., 101, 3311–3332, 1996a.
Tackley, P. J. On the ability of phase transitions and viscosity layering to induce long wavelength heterogeneity in the mantle, Geophys. Res. Lett., 23, 1985–1988, 1996b.
Tackley, P. J., Self-consistent generation of tectonic plates in timedependent, three-dimensional mantle convection simulations 2. Strain weakening and asthenosphere, Geochem. Geophys. Geosyst., 1, 2000GC000043, 2000.
Tackley, P. J., D. J. Stevenson, G. A. Glatzmaier, and G. Schubert, Effects of endothermic phase transition at 670 km depth in a spherical model of convection in the Earth’s mantle, Nature, 361, 699–704, 1993.
Tackley, P. J., D. J. Stevenson, G. A. Glatzmaier, and G. Schubert, Effects of multiple phase transitions in a 3-dimensional spherical model of convection in Earth’s mantle, J. Geophys. Res., 99, 15877–15901, 1994.
Turcotte, D. L. and G. Schubert, Geodynamics, Second Edition, Cambridge Univ. Press, pp. 456, Cambridge, U.K., 2002.
Weinstein, S. A., Catastrophic overturn of the Earth’s mantle driven by multiple phase changes and internal heat generation, Geophys. Res. Lett., 20, 101–104, 1993.
Wessel, P. and W. H. F. Smith, New, improved version of the Generic Mapping Tools released, EOS Trans. Am. Geophys. Union, 79, 579, 1998.
White, W., Sources of oceanic basalts: Radiogenic isotopic evidence, Geology, 13, 115–118, 1985.
White, R. and D. McKenzie, Magmatism at rift zones: The generation of volcanic continental margins and flood basalts, J. Geophys. Res., 94, 7685–7729, 1989.
Williams, Q., J. Revenaugh, and E. Garnero, A correlation between ultralow basal velocities in the mantle and hot spots, Science, 281, 546–549, 1998.
Yoshida, M., Numerical studies on the dynamics of the Earth’s mantle convection with moving plates, Ph.D. Thesis, Univ. of Tokyo, pp. 203, 2003.
Yoshida, M., Possible effects of lateral viscosity variations induced by plate-tectonic mechanism on geoid inferred from numerical models of mantle convection, Phys. Earth Planet. Int., 147, 67–85, 2004.
Yoshida, M. and M. Ogawa, The role of hot uprising plumes in the initiation of plate-like regime of three-dimensional mantle convection, Geophys. Res. Lett., 31, L05607, doi:10.1029/2003GL017363, 2004.
Yuen, D. A., D. M. Reuteler, S. Balachandar, V. Steinbach, A. V. Malevsky, and J. J. Smedsmo, Various influences on three-dimensional mantle convection with phase transitions, Phys. Earth Planet. Int., 86, 185–203, 1994.
Zhao, D., Seismic structure and origin of hotspots and mantle plumes, Earth Planet. Sci. Lett., 192, 251–265, 2001.
Zhao, W., D. A. Yuen, and S. Honda, Multiple phase transitions and the style of mantle convection, Phys. Earth Planet. Int., 72, 185–210, 1992.
Zhong, S. and M. Gurnis, Role of plates and temperature-dependent viscosity in phase change dynamics, J. Geophys. Res., 99, 15903–15917, 1994.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yoshida, M. Influence of two major phase transitions on mantle convection with moving and subducting plates. Earth Planet Sp 56, 1019–1033 (2004). https://doi.org/10.1186/BF03352544
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1186/BF03352544