Akaogi, M. and E. Ito, Refinement of enthalpy measurement of Mg2SiO3 perovskite and negative pressure-temperature slopes for perovskiteforming reactions, Geophys. Res. Lett., 20, 1839–1842, 1993.
Article
Google Scholar
Akaogi, M., E. Ito, and A. Navrotsky, Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculations, and geophysical applications, J. Geophys. Res., 94, 15671–15685, 1989.
Article
Google Scholar
Allègre, C. J. and D. L. Turcotte, Geodynamic mixing in the mesosphere boundary layer and the origin of oceanic islands, Geophys. Res. Lett., 12, 207–210, 1985.
Article
Google Scholar
Bercovici, D., Generation of plate tectonics from lithosphere-mantle flow and void-volatile self-lubrication, Earth Planet. Sci. Lett., 154, 139–151, 1998.
Article
Google Scholar
Bijwaard, H. and W. Sparkmann, Tomographic evidence for a narrow whole mantle plume below Iceland, Earth Planet. Sci. Lett., 166, 121–126, 1999.
Article
Google Scholar
Bijwaard, H., W. Sparkmann, and E. R. Engdahl, Closing the gap between regional and global travel time tomography, J. Geophys. Res., 103, 30055–30078, 1998.
Article
Google Scholar
Bina, C. R. and G. Helffrich, Phase transition Clapeyron slopes and transition zone seismic discontinuity topography, J. Geophys. Res., 99, 15853–15860, 1994.
Article
Google Scholar
Braginsky, S. I. and P. H. Roberts, Equations governing convection in Earth’s core and the geodynamo, Geophys. Astrophys. Fluid Dyn., 79, 1–97, 1995.
Article
Google Scholar
Brunet, D. and P. Machetel, Large-scale tectonic features induced by mantle avalanches with phase, temperature, and pressure lateral variations of viscosity, J. Geophys. Res., 103, 4929–4945, 1998.
Article
Google Scholar
Brunet, D. and D. A. Yuen, Mantle plumes pinched in the transition zone, Earth Planet. Sci. Lett., 178, 13–27, 2000.
Article
Google Scholar
Buck, W. R., When does small-scale convection begin beneath oceanic lithosphere?, Nature, 313, 775–777, 1985.
Article
Google Scholar
Buffett, B. A., The thermal state of Earth’s core, Science, 299, 1675–1677, 2003.
Article
Google Scholar
Bunge, H.-P., M. A. Richards, and J. R. Baumgardner, A sensitivity study of three-dimensional spherical mantle convection at 108 Rayleigh number: Effects of depth-dependent viscosity, heating mode, and an endothermic phase change, J. Geophys. Res., 102, 11991–12007, 1997.
Article
Google Scholar
Chopelas, A., R. Boehler, and T. Ko, Thermodynamics of γ-Mg2SiO4 from Raman spectroscopy at high pressure: The Mg2SiO4 Phase diagram, Phys. Chem. Miner., 21, 351–359, 1994.
Article
Google Scholar
Christensen, U. R., Effects of phase transitions on mantle convection, Annu. Rev. Earth Planet. Sci., 23, 65–87, 1995.
Article
Google Scholar
Christensen, U. R. and D. A. Yuen, Layered convection induced by phase transitions, J. Geophys. Res., 90, 10291–10300, 1985.
Article
Google Scholar
Cserepes, L. and D. A. Yuen, Dynamical consequences of mid-mantle viscosity stratification on mantle flows with an endothermic phase transition, Geophys. Res. Lett., 24, 181–184, 1997.
Article
Google Scholar
Cserepes, L. and D. A. Yuen, On the possibility of a second kind of mantle plume, Earth Planet. Sci. Lett., 183, 61–71, 2000.
Article
Google Scholar
Cserepes, L., D. A. Yuen, and B. Schroeder, Effect of the mid-mantle viscosity and phase-transition structure on 3D mantle convection, Phys. Earth Planet. Int., 118, 135–148, 2000.
Article
Google Scholar
Davies, G. F., Ocean bathymetry and mantle convection. 1. Large-scale flow and hotspots, J. Geophys. Res., 93, 10467–10480, 1988.
Article
Google Scholar
Davies, G. F., Dynamic Earth: Plates, Plumes and Mantle Convection, Cambridge Univ. Press, pp. 458, Cambridge, U.K., 1999.
Book
Google Scholar
Davies, G. F. and M. A. Richards, Mantle convection, J. Geol., 100, 151–206, 1992.
Article
Google Scholar
Duncan, R. A. and M. A. Richards, Hotspot, mantle plumes, flood basalts, and true polar wander, Rev. Geophys., 29, 31–50, 1991.
Article
Google Scholar
Foulger, G. R. and D. G. Pearson, Is Iceland underlain by a plume in the lower mantle? Seismology and helium isotopes, Geophys. J. Int., 145, F1–F5, 2001.
Article
Google Scholar
Foulger, G. R., M. J. Pritchard, B. R. Julian, J. R. Evans, R. M. Allen, G. Nolet, W. J. Morgan, B. H. Bergsson, P. Erlendsson, S. Jakobsdottir, S. Ragnarsson, R. Stefansson, and K. Vogfjord, The seismic anomaly beneath Iceland extends down to the mantle transition zone and no deeper, Geophys. J. Int., 142, F1–F5, 2000.
Article
Google Scholar
Foulger, G. R., M. J. Pritchard, B. R. Julian, J. R. Evans, R. M. Allen, G. Nolet, W. J. Morgan, B. H. Bergsson, P. Erlendsson, S. Jakobsdottir, S. Ragnarsson, R. Stefansson, and K. Vogfjord, Seismic tomography shows that upwelling beneath Iceland is confined to the upper mantle, Geophys. J. Int., 146, 504–530, 2001.
Article
Google Scholar
Fukao, Y., S. Widiyantoro, and M. Obayashi, Stagnant slabs in the upper and lower mantle transition zone, Rev. Geophys., 39, 291–323, 2001.
Article
Google Scholar
Garnero, E. J., J. Revenaugh, Q. Williams, T. Lay, and L. H. Kellogg, Ultralow Velocity zone at the core-mantle boundary, in The Core-mantle Boundary Region, edited by, M. Gurnis, M. E. Wysession, E. Knittle and B. A. Buffett, volume 28 of Geodynamics series, Amer. Geophys. Union., Washington, DC., 1998.
Google Scholar
Hill, R. I., I. H. Campbell, and G. F. Davies, Mantle plumes and continental tectonics, Science, 256, 186–193, 1992.
Article
Google Scholar
Hofmann, A. W., Mantle chemistry, the message from oceanic volcanism, Nature, 385, 219–229, 1997.
Article
Google Scholar
Honda, S., D. A. Yuen, S. Balachandar, and D. Reuteler, Threedimensional instabilities of mantle convection with multiple phase transitions, Science, 259, 1308–1311, 1993.
Article
Google Scholar
Ita, J. and S. D. King, Sensitivity of convection with an endothermic phase change to the form of the governing equations, initial conditions, boundary conditions, and equation of state, J. Geophys. Res., 99, 15919–15938, 1994.
Article
Google Scholar
Ito, E. and E. Takahashi, Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications, J. Geophys. Res., 94, 10637–10646, 1989.
Article
Google Scholar
Ito, E., M. Akaogi, L. Topor, and A. Navrotsky, Negative pressuretemperature slopes for reactions forming MgSiO3 perovskite from calorimetry, Science, 249, 1275–1278, 1990.
Article
Google Scholar
Katsura, T. and E. Ito, The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel, J. Geophys. Res., 94, 15663–15670, 1989.
Article
Google Scholar
Kido, M. and O. Č.adek, Inferences of viscosity from the oceanic geoid: Indication of a low viscosity zone below the 660-km discontinuity, Earth Planet. Sci. Lett., 151, 125–137, 1997.
Article
Google Scholar
Kido, M. and D. A. Yuen, The role played by a low viscosity zone under a 660 km discontinuity in regional mantle layering, Earth Planet. Sci. Lett., 181, 573–583, 2000.
Article
Google Scholar
Kido, M., D. A. Yuen, O. Cadek, and T. Nakakuki, Mantle viscosity derived by genetic algorithm using oceanic geoid and seismic tomography for whole-mantle versus blocked-flow situations, Phys. Earth Planet. Inter., 107, 307–326, 1998.
Article
Google Scholar
King, S. D. and J. J. Ita, Effect of Slab rheology on mass transport across a phase transition boundary, J. Geophys. Res., 100, 20,211–20,222, 1995.
Article
Google Scholar
King, S. D. and J. Ritsema, African hot spot volcanism: Small-scale convection in the upper mantle beneath cratons, Science, 290, 1137–1140, 2000.
Article
Google Scholar
Larson R. L., Latest pulse of Earth: Evidence for a mid-Cretaceous superplume, Geology, 19, 547–550, 1991.
Article
Google Scholar
Loper, D. E. and F. D. Stacey, The dynamical and thermal structure of deep mantle plumes, Phys. Earth Planet. Int., 33, 304–317, 1983.
Article
Google Scholar
Machetel, P. and P. Weber, Intermittent layered convection in a model mantle with an endothermic phase change at 670 km, Nature, 350, 55–57, 1991.
Article
Google Scholar
Malamud, B. D. and D. L. Turcotte, How many plumes are there?, Earth Planet. Sci. Lett., 174, 113–124, 1999.
Article
Google Scholar
Masters, G., H. Bolton, and G. Laske, Joint seismic tomography for p and s velocities: How pervasive are chemical anomalies in the mantle?, Eos. Trans. AGU, 80, Spring Meet. Suppl., S14, 1999.
Article
Google Scholar
McKenzie, D. and M. J. Bickle, The volume and composition of melt generated by extension of the lithosphere, J. Petrol., 29, 625–679, 1988.
Article
Google Scholar
McKenzie, D. P. and R. K. O’Nions, Mantle reservoirs and oceanic island basalts, Nature, 301, 229–231, 1983.
Article
Google Scholar
Mégnin, C. and B. Romanowicz, The three-dimensional shear velocity structure of the mantle from the inversion of body, surface and highermode waveforms, Geophys. J. Int., 143, 709–728, 2000.
Article
Google Scholar
Monnereau, M. and M. Rabinowicz, Is the 670 km phase transition able to layer the Earth’s convection in a mantle with depth-dependent viscosity?, Geophys. Res. Lett., 23, 1001–1004, 1996.
Article
Google Scholar
Morgan, W. J., Convection plumes in the lower mantle, Nature, 230, 42–43, 1971.
Article
Google Scholar
Morgan, W. J., Plate motions and deep mantle convection, Geol. Soc. Am. Man., 132, 7–22, 1972.
Google Scholar
Nakakuki, T. and H. Fujimoto, Interaction of the upwelling plume with the phase and chemical boundaries—Effects of the pressure-dependent viscosity—, J. Geomag. Geoelectr., 46, 587–602, 1994.
Article
Google Scholar
Nakakuki, T., H. Sato, and H. Fujimoto, Interaction of the upwelling plume with the phase and chemical boundary at the 670 km discontinuity: Effects of temperature-dependent viscosity, Earth Planet. Sci. Lett., 121, 369–384, 1994.
Article
Google Scholar
Nataf, H.-C., Seismic imaging of mantle plumes, Annu. Rev. Earth Planet. Sci., 28, 391–417, 2000.
Article
Google Scholar
Ogawa, M., Plate-like regime of a numerically modeled thermal convection in a fluid with temperature-, pressure-, and stress-history-dependent viscosity, J. Geophys. Res., 108, 2067, doi:10.1029/2000JB000069, 2003.
Article
Google Scholar
Ogawa, M. and H. Nakamura, Thermochemical regime of the early mantle inferred from numerical models of the coupled magmatism-mantle convection system with the solid-solid phase transitions at depths around 660 km, J. Geophys. Res., 103, 12161–12180, 1998.
Article
Google Scholar
Ogawa, M., G. Schubert, and A. Zebib, Numerical simulation of threedimensional thermal convection in a fluid with strongly temperaturedependent viscosity. J. Fluid Mech., 233, 299–328, 1991.
Article
Google Scholar
Patankar, S. V., Heat Transfer and Fluid Flow, Taylor and Francis, pp. 197, Philadelphia, Pa., 1980.
Google Scholar
Peltier, W. R., Postglacial variations in the level of the sea—implications for climate dynamics and solid-earth geophysics, Rev. Geophys., 36, 603–689, 1998.
Article
Google Scholar
Peltier, W. R. and L. P. Solheim, Mantle phase transitions and layered chaotic convection, Geophys. Res. Lett., 10, 321–324, 1992.
Article
Google Scholar
Pollack, H. N., S. J. Hurter, and J. R. Johnson, Heat flow from the Earth’s interior: Analysis of the global data set, Rev. Geophys., 31, 267–280, 1993.
Article
Google Scholar
Rhodes, M. and J. H. Davies, Tomographic imaging of multiple mantle plumes in the uppermost lower mantle, Geophys. J. Int., 147, 88–92, 2001.
Article
Google Scholar
Richter, F. M., Finite amplitude convection through a phase boundary, Geophys. J. R. Astron. Soc., 35, 265–276, 1973.
Article
Google Scholar
Richter, F. M. and B. Parsons, On the interaction of two scales of convection in the mantle, J. Geophys. Res., 80, 2529–2541, 1975.
Article
Google Scholar
Shen, Y., S. C. Solomon, I. T. Bjarnason, and C. J. Wolfe, Seismic evidence for a lower-mantle origin of the Iceland plume, Nature, 395, 62–65, 1998.
Article
Google Scholar
Sleep, N. H., Hotspots and mantle plumes: Some phenomenology, J. Geophys. Res., 95, 6715–6736, 1990.
Article
Google Scholar
Smolarkiewicz, P. K., A simple positive definite advection scheme with small implicit diffusion, Mon. Wea. Rev., 111, 479–486, 1983.
Article
Google Scholar
Smolarkiewicz, P. K., A fully multidimensional positive definite advection transport algorithm with small implicit diffusion, J. Comput. Phys., 54, 325–362, 1984.
Article
Google Scholar
Smolarkiewicz, P. K. and T. L. Clark, The multidimensional positive definite advection transport algorithm: Further development and applications, J. Comput. Phys., 67, 396–438, 1986.
Article
Google Scholar
Solheim, L. P. and W. R. Peltier, Avalanche effects in phase transition modulated thermal convection: A model of Earth’s mantle, J. Geophys. Res., 99, 6997–7018, 1994a.
Article
Google Scholar
Solheim, L. P. and W. R. Peltier, Phase boundary deflections at 660-km depth and episodically layered isochemical convection in the mantle, J. Geophys. Res., 99, 15861–15875, 1994b.
Article
Google Scholar
Solomatov, V. S., Scaling of temperature- and stress-dependent viscosity convection. Phys. Fluids, 7, 266–274, 1995.
Article
Google Scholar
Steinbach, V. and D. A. Yuen, Effects of depth-dependent properties on the thermal anomalies produced in flush instabilities from phase transitions, Phys. Earth Planet. Int., 86, 165–183, 1994.
Article
Google Scholar
Steinbach, V. and D. A. Yuen, The effects of temperature-dependent viscosity on mantle convection with the two major phase transitions, Phys. Earth Planet. Int., 90, 13–36, 1995.
Article
Google Scholar
Steinbach, V. and D. A. Yuen, Dynamical effects of a temperature- and pressure-dependent lower-mantle rheology on the interaction of upwellings with the transition zone, Phys. Earth Planet. Int., 103, 85–100, 1997.
Article
Google Scholar
Steinbach, V., D. A. Yuen, and W. Zhao, Instabilities from phase transitions and the timescales of mantle thermal evolution, Geophys. Res. Lett., 20, 1119–1122, 1993.
Article
Google Scholar
Su, W., R. L. Woodward, and A. M. Dziewonski, Degree 12 model of shear velocity heterogeneity in the mantle, J. Geophys. Res., 99, 6945–6980, 1994.
Article
Google Scholar
Tackley, P. J., Effects of strongly variable viscosity on three-dimensional compressible convection in planetary mantles, J. Geophys. Res., 101, 3311–3332, 1996a.
Article
Google Scholar
Tackley, P. J. On the ability of phase transitions and viscosity layering to induce long wavelength heterogeneity in the mantle, Geophys. Res. Lett., 23, 1985–1988, 1996b.
Article
Google Scholar
Tackley, P. J., Self-consistent generation of tectonic plates in timedependent, three-dimensional mantle convection simulations 2. Strain weakening and asthenosphere, Geochem. Geophys. Geosyst., 1, 2000GC000043, 2000.
Google Scholar
Tackley, P. J., D. J. Stevenson, G. A. Glatzmaier, and G. Schubert, Effects of endothermic phase transition at 670 km depth in a spherical model of convection in the Earth’s mantle, Nature, 361, 699–704, 1993.
Article
Google Scholar
Tackley, P. J., D. J. Stevenson, G. A. Glatzmaier, and G. Schubert, Effects of multiple phase transitions in a 3-dimensional spherical model of convection in Earth’s mantle, J. Geophys. Res., 99, 15877–15901, 1994.
Article
Google Scholar
Turcotte, D. L. and G. Schubert, Geodynamics, Second Edition, Cambridge Univ. Press, pp. 456, Cambridge, U.K., 2002.
Book
Google Scholar
Weinstein, S. A., Catastrophic overturn of the Earth’s mantle driven by multiple phase changes and internal heat generation, Geophys. Res. Lett., 20, 101–104, 1993.
Article
Google Scholar
Wessel, P. and W. H. F. Smith, New, improved version of the Generic Mapping Tools released, EOS Trans. Am. Geophys. Union, 79, 579, 1998.
Article
Google Scholar
White, W., Sources of oceanic basalts: Radiogenic isotopic evidence, Geology, 13, 115–118, 1985.
Article
Google Scholar
White, R. and D. McKenzie, Magmatism at rift zones: The generation of volcanic continental margins and flood basalts, J. Geophys. Res., 94, 7685–7729, 1989.
Article
Google Scholar
Williams, Q., J. Revenaugh, and E. Garnero, A correlation between ultralow basal velocities in the mantle and hot spots, Science, 281, 546–549, 1998.
Article
Google Scholar
Yoshida, M., Numerical studies on the dynamics of the Earth’s mantle convection with moving plates, Ph.D. Thesis, Univ. of Tokyo, pp. 203, 2003.
Google Scholar
Yoshida, M., Possible effects of lateral viscosity variations induced by plate-tectonic mechanism on geoid inferred from numerical models of mantle convection, Phys. Earth Planet. Int., 147, 67–85, 2004.
Article
Google Scholar
Yoshida, M. and M. Ogawa, The role of hot uprising plumes in the initiation of plate-like regime of three-dimensional mantle convection, Geophys. Res. Lett., 31, L05607, doi:10.1029/2003GL017363, 2004.
Google Scholar
Yuen, D. A., D. M. Reuteler, S. Balachandar, V. Steinbach, A. V. Malevsky, and J. J. Smedsmo, Various influences on three-dimensional mantle convection with phase transitions, Phys. Earth Planet. Int., 86, 185–203, 1994.
Article
Google Scholar
Zhao, D., Seismic structure and origin of hotspots and mantle plumes, Earth Planet. Sci. Lett., 192, 251–265, 2001.
Article
Google Scholar
Zhao, W., D. A. Yuen, and S. Honda, Multiple phase transitions and the style of mantle convection, Phys. Earth Planet. Int., 72, 185–210, 1992.
Article
Google Scholar
Zhong, S. and M. Gurnis, Role of plates and temperature-dependent viscosity in phase change dynamics, J. Geophys. Res., 99, 15903–15917, 1994.
Article
Google Scholar