Skip to main content

Influence of two major phase transitions on mantle convection with moving and subducting plates

Abstract

A series of numerical simulation has been carried out to explore the influence of two major phase transitions at 410 km and 660 km phase boundaries on mantle convection with self-consistently moving and subducting plates, that is, on the “plate-like regime” of mantle convection. The degree of Clausius-Clapeyron slope at the 660 km phase boundary is systematically changed within the range estimated by high pressure experiments. On the plate-like regime where moving plates continuously subduct, as the Clausius-Clapeyron slope is steepened, the upwelling plumes originating from the bottom thermal boundary layer are less buoyant owing to the increase of average mantle temperature, so that the upwelling plumes are hard to penetrate through the 660 km phase boundary. Investigations reveal that three types of small upwelling plumes in the upper mantle are found on the plate-like regime: (1) The secondary plumes directly derived from the upwelling plumes from the lower mantle, (2) the passive upwellings from the shallow parts of the lower mantle due to the diffused return flow by continuously subducting plates, and (3) the secondary plumes originating from the 660 km phase boundary caused by the development of the small-scale convection cells confined in the upper mantle.

References

  • Akaogi, M. and E. Ito, Refinement of enthalpy measurement of Mg2SiO3 perovskite and negative pressure-temperature slopes for perovskiteforming reactions, Geophys. Res. Lett., 20, 1839–1842, 1993.

    Article  Google Scholar 

  • Akaogi, M., E. Ito, and A. Navrotsky, Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculations, and geophysical applications, J. Geophys. Res., 94, 15671–15685, 1989.

    Article  Google Scholar 

  • Allègre, C. J. and D. L. Turcotte, Geodynamic mixing in the mesosphere boundary layer and the origin of oceanic islands, Geophys. Res. Lett., 12, 207–210, 1985.

    Article  Google Scholar 

  • Bercovici, D., Generation of plate tectonics from lithosphere-mantle flow and void-volatile self-lubrication, Earth Planet. Sci. Lett., 154, 139–151, 1998.

    Article  Google Scholar 

  • Bijwaard, H. and W. Sparkmann, Tomographic evidence for a narrow whole mantle plume below Iceland, Earth Planet. Sci. Lett., 166, 121–126, 1999.

    Article  Google Scholar 

  • Bijwaard, H., W. Sparkmann, and E. R. Engdahl, Closing the gap between regional and global travel time tomography, J. Geophys. Res., 103, 30055–30078, 1998.

    Article  Google Scholar 

  • Bina, C. R. and G. Helffrich, Phase transition Clapeyron slopes and transition zone seismic discontinuity topography, J. Geophys. Res., 99, 15853–15860, 1994.

    Article  Google Scholar 

  • Braginsky, S. I. and P. H. Roberts, Equations governing convection in Earth’s core and the geodynamo, Geophys. Astrophys. Fluid Dyn., 79, 1–97, 1995.

    Article  Google Scholar 

  • Brunet, D. and P. Machetel, Large-scale tectonic features induced by mantle avalanches with phase, temperature, and pressure lateral variations of viscosity, J. Geophys. Res., 103, 4929–4945, 1998.

    Article  Google Scholar 

  • Brunet, D. and D. A. Yuen, Mantle plumes pinched in the transition zone, Earth Planet. Sci. Lett., 178, 13–27, 2000.

    Article  Google Scholar 

  • Buck, W. R., When does small-scale convection begin beneath oceanic lithosphere?, Nature, 313, 775–777, 1985.

    Article  Google Scholar 

  • Buffett, B. A., The thermal state of Earth’s core, Science, 299, 1675–1677, 2003.

    Article  Google Scholar 

  • Bunge, H.-P., M. A. Richards, and J. R. Baumgardner, A sensitivity study of three-dimensional spherical mantle convection at 108 Rayleigh number: Effects of depth-dependent viscosity, heating mode, and an endothermic phase change, J. Geophys. Res., 102, 11991–12007, 1997.

    Article  Google Scholar 

  • Chopelas, A., R. Boehler, and T. Ko, Thermodynamics of γ-Mg2SiO4 from Raman spectroscopy at high pressure: The Mg2SiO4 Phase diagram, Phys. Chem. Miner., 21, 351–359, 1994.

    Article  Google Scholar 

  • Christensen, U. R., Effects of phase transitions on mantle convection, Annu. Rev. Earth Planet. Sci., 23, 65–87, 1995.

    Article  Google Scholar 

  • Christensen, U. R. and D. A. Yuen, Layered convection induced by phase transitions, J. Geophys. Res., 90, 10291–10300, 1985.

    Article  Google Scholar 

  • Cserepes, L. and D. A. Yuen, Dynamical consequences of mid-mantle viscosity stratification on mantle flows with an endothermic phase transition, Geophys. Res. Lett., 24, 181–184, 1997.

    Article  Google Scholar 

  • Cserepes, L. and D. A. Yuen, On the possibility of a second kind of mantle plume, Earth Planet. Sci. Lett., 183, 61–71, 2000.

    Article  Google Scholar 

  • Cserepes, L., D. A. Yuen, and B. Schroeder, Effect of the mid-mantle viscosity and phase-transition structure on 3D mantle convection, Phys. Earth Planet. Int., 118, 135–148, 2000.

    Article  Google Scholar 

  • Davies, G. F., Ocean bathymetry and mantle convection. 1. Large-scale flow and hotspots, J. Geophys. Res., 93, 10467–10480, 1988.

    Article  Google Scholar 

  • Davies, G. F., Dynamic Earth: Plates, Plumes and Mantle Convection, Cambridge Univ. Press, pp. 458, Cambridge, U.K., 1999.

    Book  Google Scholar 

  • Davies, G. F. and M. A. Richards, Mantle convection, J. Geol., 100, 151–206, 1992.

    Article  Google Scholar 

  • Duncan, R. A. and M. A. Richards, Hotspot, mantle plumes, flood basalts, and true polar wander, Rev. Geophys., 29, 31–50, 1991.

    Article  Google Scholar 

  • Foulger, G. R. and D. G. Pearson, Is Iceland underlain by a plume in the lower mantle? Seismology and helium isotopes, Geophys. J. Int., 145, F1–F5, 2001.

    Article  Google Scholar 

  • Foulger, G. R., M. J. Pritchard, B. R. Julian, J. R. Evans, R. M. Allen, G. Nolet, W. J. Morgan, B. H. Bergsson, P. Erlendsson, S. Jakobsdottir, S. Ragnarsson, R. Stefansson, and K. Vogfjord, The seismic anomaly beneath Iceland extends down to the mantle transition zone and no deeper, Geophys. J. Int., 142, F1–F5, 2000.

    Article  Google Scholar 

  • Foulger, G. R., M. J. Pritchard, B. R. Julian, J. R. Evans, R. M. Allen, G. Nolet, W. J. Morgan, B. H. Bergsson, P. Erlendsson, S. Jakobsdottir, S. Ragnarsson, R. Stefansson, and K. Vogfjord, Seismic tomography shows that upwelling beneath Iceland is confined to the upper mantle, Geophys. J. Int., 146, 504–530, 2001.

    Article  Google Scholar 

  • Fukao, Y., S. Widiyantoro, and M. Obayashi, Stagnant slabs in the upper and lower mantle transition zone, Rev. Geophys., 39, 291–323, 2001.

    Article  Google Scholar 

  • Garnero, E. J., J. Revenaugh, Q. Williams, T. Lay, and L. H. Kellogg, Ultralow Velocity zone at the core-mantle boundary, in The Core-mantle Boundary Region, edited by, M. Gurnis, M. E. Wysession, E. Knittle and B. A. Buffett, volume 28 of Geodynamics series, Amer. Geophys. Union., Washington, DC., 1998.

    Google Scholar 

  • Hill, R. I., I. H. Campbell, and G. F. Davies, Mantle plumes and continental tectonics, Science, 256, 186–193, 1992.

    Article  Google Scholar 

  • Hofmann, A. W., Mantle chemistry, the message from oceanic volcanism, Nature, 385, 219–229, 1997.

    Article  Google Scholar 

  • Honda, S., D. A. Yuen, S. Balachandar, and D. Reuteler, Threedimensional instabilities of mantle convection with multiple phase transitions, Science, 259, 1308–1311, 1993.

    Article  Google Scholar 

  • Ita, J. and S. D. King, Sensitivity of convection with an endothermic phase change to the form of the governing equations, initial conditions, boundary conditions, and equation of state, J. Geophys. Res., 99, 15919–15938, 1994.

    Article  Google Scholar 

  • Ito, E. and E. Takahashi, Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications, J. Geophys. Res., 94, 10637–10646, 1989.

    Article  Google Scholar 

  • Ito, E., M. Akaogi, L. Topor, and A. Navrotsky, Negative pressuretemperature slopes for reactions forming MgSiO3 perovskite from calorimetry, Science, 249, 1275–1278, 1990.

    Article  Google Scholar 

  • Katsura, T. and E. Ito, The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel, J. Geophys. Res., 94, 15663–15670, 1989.

    Article  Google Scholar 

  • Kido, M. and O. Č.adek, Inferences of viscosity from the oceanic geoid: Indication of a low viscosity zone below the 660-km discontinuity, Earth Planet. Sci. Lett., 151, 125–137, 1997.

    Article  Google Scholar 

  • Kido, M. and D. A. Yuen, The role played by a low viscosity zone under a 660 km discontinuity in regional mantle layering, Earth Planet. Sci. Lett., 181, 573–583, 2000.

    Article  Google Scholar 

  • Kido, M., D. A. Yuen, O. Cadek, and T. Nakakuki, Mantle viscosity derived by genetic algorithm using oceanic geoid and seismic tomography for whole-mantle versus blocked-flow situations, Phys. Earth Planet. Inter., 107, 307–326, 1998.

    Article  Google Scholar 

  • King, S. D. and J. J. Ita, Effect of Slab rheology on mass transport across a phase transition boundary, J. Geophys. Res., 100, 20,211–20,222, 1995.

    Article  Google Scholar 

  • King, S. D. and J. Ritsema, African hot spot volcanism: Small-scale convection in the upper mantle beneath cratons, Science, 290, 1137–1140, 2000.

    Article  Google Scholar 

  • Larson R. L., Latest pulse of Earth: Evidence for a mid-Cretaceous superplume, Geology, 19, 547–550, 1991.

    Article  Google Scholar 

  • Loper, D. E. and F. D. Stacey, The dynamical and thermal structure of deep mantle plumes, Phys. Earth Planet. Int., 33, 304–317, 1983.

    Article  Google Scholar 

  • Machetel, P. and P. Weber, Intermittent layered convection in a model mantle with an endothermic phase change at 670 km, Nature, 350, 55–57, 1991.

    Article  Google Scholar 

  • Malamud, B. D. and D. L. Turcotte, How many plumes are there?, Earth Planet. Sci. Lett., 174, 113–124, 1999.

    Article  Google Scholar 

  • Masters, G., H. Bolton, and G. Laske, Joint seismic tomography for p and s velocities: How pervasive are chemical anomalies in the mantle?, Eos. Trans. AGU, 80, Spring Meet. Suppl., S14, 1999.

    Article  Google Scholar 

  • McKenzie, D. and M. J. Bickle, The volume and composition of melt generated by extension of the lithosphere, J. Petrol., 29, 625–679, 1988.

    Article  Google Scholar 

  • McKenzie, D. P. and R. K. O’Nions, Mantle reservoirs and oceanic island basalts, Nature, 301, 229–231, 1983.

    Article  Google Scholar 

  • Mégnin, C. and B. Romanowicz, The three-dimensional shear velocity structure of the mantle from the inversion of body, surface and highermode waveforms, Geophys. J. Int., 143, 709–728, 2000.

    Article  Google Scholar 

  • Monnereau, M. and M. Rabinowicz, Is the 670 km phase transition able to layer the Earth’s convection in a mantle with depth-dependent viscosity?, Geophys. Res. Lett., 23, 1001–1004, 1996.

    Article  Google Scholar 

  • Morgan, W. J., Convection plumes in the lower mantle, Nature, 230, 42–43, 1971.

    Article  Google Scholar 

  • Morgan, W. J., Plate motions and deep mantle convection, Geol. Soc. Am. Man., 132, 7–22, 1972.

    Google Scholar 

  • Nakakuki, T. and H. Fujimoto, Interaction of the upwelling plume with the phase and chemical boundaries—Effects of the pressure-dependent viscosity—, J. Geomag. Geoelectr., 46, 587–602, 1994.

    Article  Google Scholar 

  • Nakakuki, T., H. Sato, and H. Fujimoto, Interaction of the upwelling plume with the phase and chemical boundary at the 670 km discontinuity: Effects of temperature-dependent viscosity, Earth Planet. Sci. Lett., 121, 369–384, 1994.

    Article  Google Scholar 

  • Nataf, H.-C., Seismic imaging of mantle plumes, Annu. Rev. Earth Planet. Sci., 28, 391–417, 2000.

    Article  Google Scholar 

  • Ogawa, M., Plate-like regime of a numerically modeled thermal convection in a fluid with temperature-, pressure-, and stress-history-dependent viscosity, J. Geophys. Res., 108, 2067, doi:10.1029/2000JB000069, 2003.

    Article  Google Scholar 

  • Ogawa, M. and H. Nakamura, Thermochemical regime of the early mantle inferred from numerical models of the coupled magmatism-mantle convection system with the solid-solid phase transitions at depths around 660 km, J. Geophys. Res., 103, 12161–12180, 1998.

    Article  Google Scholar 

  • Ogawa, M., G. Schubert, and A. Zebib, Numerical simulation of threedimensional thermal convection in a fluid with strongly temperaturedependent viscosity. J. Fluid Mech., 233, 299–328, 1991.

    Article  Google Scholar 

  • Patankar, S. V., Heat Transfer and Fluid Flow, Taylor and Francis, pp. 197, Philadelphia, Pa., 1980.

    Google Scholar 

  • Peltier, W. R., Postglacial variations in the level of the sea—implications for climate dynamics and solid-earth geophysics, Rev. Geophys., 36, 603–689, 1998.

    Article  Google Scholar 

  • Peltier, W. R. and L. P. Solheim, Mantle phase transitions and layered chaotic convection, Geophys. Res. Lett., 10, 321–324, 1992.

    Article  Google Scholar 

  • Pollack, H. N., S. J. Hurter, and J. R. Johnson, Heat flow from the Earth’s interior: Analysis of the global data set, Rev. Geophys., 31, 267–280, 1993.

    Article  Google Scholar 

  • Rhodes, M. and J. H. Davies, Tomographic imaging of multiple mantle plumes in the uppermost lower mantle, Geophys. J. Int., 147, 88–92, 2001.

    Article  Google Scholar 

  • Richter, F. M., Finite amplitude convection through a phase boundary, Geophys. J. R. Astron. Soc., 35, 265–276, 1973.

    Article  Google Scholar 

  • Richter, F. M. and B. Parsons, On the interaction of two scales of convection in the mantle, J. Geophys. Res., 80, 2529–2541, 1975.

    Article  Google Scholar 

  • Shen, Y., S. C. Solomon, I. T. Bjarnason, and C. J. Wolfe, Seismic evidence for a lower-mantle origin of the Iceland plume, Nature, 395, 62–65, 1998.

    Article  Google Scholar 

  • Sleep, N. H., Hotspots and mantle plumes: Some phenomenology, J. Geophys. Res., 95, 6715–6736, 1990.

    Article  Google Scholar 

  • Smolarkiewicz, P. K., A simple positive definite advection scheme with small implicit diffusion, Mon. Wea. Rev., 111, 479–486, 1983.

    Article  Google Scholar 

  • Smolarkiewicz, P. K., A fully multidimensional positive definite advection transport algorithm with small implicit diffusion, J. Comput. Phys., 54, 325–362, 1984.

    Article  Google Scholar 

  • Smolarkiewicz, P. K. and T. L. Clark, The multidimensional positive definite advection transport algorithm: Further development and applications, J. Comput. Phys., 67, 396–438, 1986.

    Article  Google Scholar 

  • Solheim, L. P. and W. R. Peltier, Avalanche effects in phase transition modulated thermal convection: A model of Earth’s mantle, J. Geophys. Res., 99, 6997–7018, 1994a.

    Article  Google Scholar 

  • Solheim, L. P. and W. R. Peltier, Phase boundary deflections at 660-km depth and episodically layered isochemical convection in the mantle, J. Geophys. Res., 99, 15861–15875, 1994b.

    Article  Google Scholar 

  • Solomatov, V. S., Scaling of temperature- and stress-dependent viscosity convection. Phys. Fluids, 7, 266–274, 1995.

    Article  Google Scholar 

  • Steinbach, V. and D. A. Yuen, Effects of depth-dependent properties on the thermal anomalies produced in flush instabilities from phase transitions, Phys. Earth Planet. Int., 86, 165–183, 1994.

    Article  Google Scholar 

  • Steinbach, V. and D. A. Yuen, The effects of temperature-dependent viscosity on mantle convection with the two major phase transitions, Phys. Earth Planet. Int., 90, 13–36, 1995.

    Article  Google Scholar 

  • Steinbach, V. and D. A. Yuen, Dynamical effects of a temperature- and pressure-dependent lower-mantle rheology on the interaction of upwellings with the transition zone, Phys. Earth Planet. Int., 103, 85–100, 1997.

    Article  Google Scholar 

  • Steinbach, V., D. A. Yuen, and W. Zhao, Instabilities from phase transitions and the timescales of mantle thermal evolution, Geophys. Res. Lett., 20, 1119–1122, 1993.

    Article  Google Scholar 

  • Su, W., R. L. Woodward, and A. M. Dziewonski, Degree 12 model of shear velocity heterogeneity in the mantle, J. Geophys. Res., 99, 6945–6980, 1994.

    Article  Google Scholar 

  • Tackley, P. J., Effects of strongly variable viscosity on three-dimensional compressible convection in planetary mantles, J. Geophys. Res., 101, 3311–3332, 1996a.

    Article  Google Scholar 

  • Tackley, P. J. On the ability of phase transitions and viscosity layering to induce long wavelength heterogeneity in the mantle, Geophys. Res. Lett., 23, 1985–1988, 1996b.

    Article  Google Scholar 

  • Tackley, P. J., Self-consistent generation of tectonic plates in timedependent, three-dimensional mantle convection simulations 2. Strain weakening and asthenosphere, Geochem. Geophys. Geosyst., 1, 2000GC000043, 2000.

    Google Scholar 

  • Tackley, P. J., D. J. Stevenson, G. A. Glatzmaier, and G. Schubert, Effects of endothermic phase transition at 670 km depth in a spherical model of convection in the Earth’s mantle, Nature, 361, 699–704, 1993.

    Article  Google Scholar 

  • Tackley, P. J., D. J. Stevenson, G. A. Glatzmaier, and G. Schubert, Effects of multiple phase transitions in a 3-dimensional spherical model of convection in Earth’s mantle, J. Geophys. Res., 99, 15877–15901, 1994.

    Article  Google Scholar 

  • Turcotte, D. L. and G. Schubert, Geodynamics, Second Edition, Cambridge Univ. Press, pp. 456, Cambridge, U.K., 2002.

    Book  Google Scholar 

  • Weinstein, S. A., Catastrophic overturn of the Earth’s mantle driven by multiple phase changes and internal heat generation, Geophys. Res. Lett., 20, 101–104, 1993.

    Article  Google Scholar 

  • Wessel, P. and W. H. F. Smith, New, improved version of the Generic Mapping Tools released, EOS Trans. Am. Geophys. Union, 79, 579, 1998.

    Article  Google Scholar 

  • White, W., Sources of oceanic basalts: Radiogenic isotopic evidence, Geology, 13, 115–118, 1985.

    Article  Google Scholar 

  • White, R. and D. McKenzie, Magmatism at rift zones: The generation of volcanic continental margins and flood basalts, J. Geophys. Res., 94, 7685–7729, 1989.

    Article  Google Scholar 

  • Williams, Q., J. Revenaugh, and E. Garnero, A correlation between ultralow basal velocities in the mantle and hot spots, Science, 281, 546–549, 1998.

    Article  Google Scholar 

  • Yoshida, M., Numerical studies on the dynamics of the Earth’s mantle convection with moving plates, Ph.D. Thesis, Univ. of Tokyo, pp. 203, 2003.

    Google Scholar 

  • Yoshida, M., Possible effects of lateral viscosity variations induced by plate-tectonic mechanism on geoid inferred from numerical models of mantle convection, Phys. Earth Planet. Int., 147, 67–85, 2004.

    Article  Google Scholar 

  • Yoshida, M. and M. Ogawa, The role of hot uprising plumes in the initiation of plate-like regime of three-dimensional mantle convection, Geophys. Res. Lett., 31, L05607, doi:10.1029/2003GL017363, 2004.

    Google Scholar 

  • Yuen, D. A., D. M. Reuteler, S. Balachandar, V. Steinbach, A. V. Malevsky, and J. J. Smedsmo, Various influences on three-dimensional mantle convection with phase transitions, Phys. Earth Planet. Int., 86, 185–203, 1994.

    Article  Google Scholar 

  • Zhao, D., Seismic structure and origin of hotspots and mantle plumes, Earth Planet. Sci. Lett., 192, 251–265, 2001.

    Article  Google Scholar 

  • Zhao, W., D. A. Yuen, and S. Honda, Multiple phase transitions and the style of mantle convection, Phys. Earth Planet. Int., 72, 185–210, 1992.

    Article  Google Scholar 

  • Zhong, S. and M. Gurnis, Role of plates and temperature-dependent viscosity in phase change dynamics, J. Geophys. Res., 99, 15903–15917, 1994.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masaki Yoshida.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoshida, M. Influence of two major phase transitions on mantle convection with moving and subducting plates. Earth Planet Sp 56, 1019–1033 (2004). https://doi.org/10.1186/BF03352544

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352544

Key words

  • Numerical simulation
  • mantle convection
  • phase transition
  • moving plate
  • subducting plate
  • plate-like regime