- Article
- Open access
- Published:
Numerical analysis of initiation of gigantic jets connecting thunderclouds to the ionosphere
Earth, Planets and Space volume 56, pages 1059–1065 (2004)
Abstract
The initiation of giant electrical discharges called as “gigantic jets” connecting thunderclouds to the ionosphere is investigated by numerical simulation method in this paper. Using similarity relations, the triggering conditions of streamer formation in laboratory situations are extended to form a criterion of initiation of gigantic jets. The energy source causing a gigantic jet is considered due to the quasi-electrostatic field generated by thunderclouds. The quasi-electrostatic field is assumed to be axisymmetrical. We calculate the electric fields for different thundercloud charges. The electron dynamics from ionization threshold to streamer initiation are simulated by the Monte Carlo technique. It is found that gigantic jets are initiated at a height of ∼18–24 km. This is in agreement with the observations. The distributions of electron positions and electron energies at different initiation heights are presented. The method presented in this paper could be also applied to the analysis of the initiation of other discharges such as blue jets and red sprites.
References
Babaeva, N. Yu. and G. V. Naidis, Dynamics of positive and negative streamers in air in weak uniform electric fields, IEEE Trans. Plasma Sci., 25, 375–379, 1997.
Barrington-Leigh, C. P. and U. S. Inan, Identification of sprites and elves with intensified video and broadband array photometry, J. Geophys. Res., 106, 1741–1750, 2001.
Cummer, S. A., U. S. Inan, and T. F. Bell, Ionospheric D region remote sensing using VLF radio atmospherics, Radio Sci., 33, 1781–1792, 1998.
Dejnakarintra, M. and C. G. Park, Lightning-induced electric fields in the ionosphere, J. Geophys. Res., 79, 1903–1910, 1974.
Dwyer, J. R., M. A. Uman, H. K. Rassoul, M. Al-Dayeh, L. Caraway, J. Jerauld, V. A. Rakov, D. M. Jordan, K. J. Rambo, V. Corbin, and B. Wright, Energetic radiation produced during rocket-triggered lightning, Science, 299, 694–696, 2003.
Fukunishi, H., Y. Takahashi, M. Kubota, and K. Sakanoi, Elves: lightninginduced transient luminous events in the lower ionosphere, Geophys. Res. Lett., 23, 2157–2160, 1996.
Fukunishi, H., Y. Takahashi, M. Sato, A. Shono, M. Fujito, and Y. Watanabe, Ground-based observations of ULF transients excited by strong lightning discharges producing elves and sprites, Geophys. Res. Lett., 24, 2973–2976, 1997.
Hockney, R.W. and J.W. Eastwood, Computer Simulation using Particles, IOP Publishing Ltd, Bristol, 1988.
Kondo, S. and K. Nanbu, Axisymmetrical particle-in-cell/Monte Carlo simulation of narrow gap plane magnetron plasmas. I. Direct currentdriven discharge, J. Vac. Sci. Technol. A., 19, 830–837, 2001.
Lyons, W. A., Sprites observations above the US High Plains in relation to their parent thunderstorm systems, J. Geophys. Res., 101, 29,641–29,652, 1996.
MacGorman, D. R. and W. D. Rust, The Electrical Nature of Storms, Oxford University Press, 1998.
Miyasato, R., M. J. Taylor, H. Fukunishi, and H. C. Stenbaek-Nielsen, Statistical characteristics of sprite halo events using coincident photometric and imaging data, Geophys. Res. Lett., 29, 2033, doi:10.1029/2001GL014480, 2002.
Miyasato, R., H. Fukunishi, Y. Takahashi, M. J. Taylor, Energy estimation of electrons producing sprite halos using array photometer data, J. Atmos. Terr. Phys., 65, 573–581, 2003.
Moore, C. B., K. B. Eack, G. D. Aulich, and W. Rison, Energetic radiation associated with lightning stepped-leaders, Geophys. Res. Lett., 28, 2141–2144, 2001.
Nanbu, K., Simple method to determine collisional event in Monte Carlo simulation of electron-molecule collision, Jpn. J. Appl. Phys., 33, 4752–4753, 1994.
Nanbu, K., Probability theory of electron-molecule, ion-molecule, molecule-molecule, and Coulomb collisions for particle modeling of materials processing plasmas and gases, IEEE Trans. Plasma Sci., 28, 971–990, 2000.
National Research Council, The Earth’s Electrical Environment, National Academy Press, 1986.
Pasko, V. P., Electric jets, Nature, 423, 927–929, 2003.
Pasko, V. P. and J. J. George, Three-dimensional modeling of blue jet and blue starters, J. Geophys. Res., 107, 1458, doi:1029/2002JA009473, 2002.
Pasko, V. P., U. S. Inan, and T. F. Bell, Blue jets produced by quasielectrostatic pre-discharge thundercloud fields, Geophys. Res. Lett., 23, 301–304, 1996.
Pasko, V. P., U. S. Inan, T. F. Bell, and Y. N. Taranenko, Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere, J. Geophys. Res., 102, 4529–4561, 1997.
Pasko, V. P., M. A. Stanley, J. D. Mathews, U. S. Inan, and T. G. Wood, Electrical discharge from a thundercloud top to the lower ionosphere, Nature, 416, 152–154, 2002.
Phelps, A. V., JILA Information Center Report No. 26, University of Colorado, Boulder CO, 1985.
Potter, D., Computational Physics, John Wiley, New York, 1973.
Raizer, Yu. P., Gas Discharge Physics, Springer-Verlag, Berlin, 1991.
Raizer, Yu. P., G. M. Milikh, M. N. Shneider, and S. V. Novakovski, Long streamers in the upper atmposphere above thundercloud, J. Phys. D: Appl. Phys., 31, 3255–3264, 1998.
Rapp, D. and D. D. Briglia, Total cross sections for ionization and attachment in gases by electron impact. II. Negative-ion formation, J. Chem. Phys., 43, 1480–1489, 1965.
Rees, M. H., Physics and Chemistry of the Upper Atmosphere, Cambridge University Press, New York, 1989.
Rowland, H. L., Theories and simulations of elves, sprites and blue jets, J. Atmos. Terr. Phys., 60, 831–844, 1998.
Sentman, D. D., E. M. Wescott, D. L. Osborne, D. L. Hampton, and M. J. Heavener, Preliminary results from the Sprites94 aircraft campaign, 1, Red sprites, Geophys. Res. Lett., 22, 1205–1208, 1995.
Su, H. T., R. R. Hsu, A. B. Chen, Y. C. Wang, W. S. Hsiao, W. C. Lai, L. C. Lee, M. Sato, and H. Fukunishi, Gigantic jets between a thundercloud and the ionosphere, Nature, 423, 974–976, 2003.
Takahashi, Y., R. Miyasato, T. Adachi, K. Adachi, M. Sera, A. Uchida, and H. Fukunishi, Activities of sprites and elves in the winter season, Japan, J. Atmos. Solar. Terr. Phys., 65, 551–560, 2003.
Tong, L., K. Nanbu, Y. Hiraki, and H. Fukunishi, Particle modeling of the electrical discharge in the upper atmosphere above thundercloud, J. Phys. Soc. Jpn., 73(9), 2438–2443, 2004.
Ueda, A., Computer Simulation—Atomic Motion in Macro-system, Asakura Bookstore Publishing Ltd, Tokyo, 1990 (in Japanese).
US Standard Atmosphere 1976, NOAA-S/T 76-1562, US Government Printing Office, Washington, DC, 1976.
Wescott, E. M., D. D. Sentman, D. L. Osborne, D. L. Hampton, and M. J. Heavner, Preliminary results from the Sprites94 aircraft campaign, 2, Blue jets, Geophys. Res. Lett., 22, 1209–1212, 1995.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tong, L., Nanbu, K. & Fukunishi, H. Numerical analysis of initiation of gigantic jets connecting thunderclouds to the ionosphere. Earth Planet Sp 56, 1059–1065 (2004). https://doi.org/10.1186/BF03352548
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1186/BF03352548