Skip to main content

Volume 57 Supplement 4

Special Issue: Special Section for the 2004 off the Kii peninsula earthquakes (2)

Estimation of picked-up lunar ions for future compositional remote SIMS analyses of the lunar surface

Abstract

In situ measurement of Moon-originating ions picked-up in orbit round the Moon is expected to provide valuable information regarding the thin lunar atmosphere and surface. Secondary ions sputtered by the solar wind ions reflect the surface abundance. Global composition mapping of the lunar surface may be thus achieved by measuring the sputtered ions as one would perform laboratory SIMS.We studied the dynamics of picked-up lunar ions when the Moon was exposed to the solar wind. Our model’s source mechanism involved photoionization of the lunar exospheric atoms, photon-stimulated ion desorption, and ion sputtering. We propose that an intense flux of picked-up lunar ions (104 /cm2 sec) exists at an altitude of 100 km, for nearly a quarter of the orbit. The ion flux originating from the lunar surface is mono-directional and mono-energetic, and is distinguishable from that of lunar atmospheric origin whose energy spectra correspond to their spatial distribution. Our calculation suggested that ion measurements in orbit round the Moon enable remote SIMS analyses.

References

  • Ageev, V. N., Yu. A. Kuznetsov, B. V. Yakshinskiy, and T. E. Madey, Electron stimulated desorption of alkali metal ions and atoms: Local surface field relaxation, Nucl. Instr. Meth., B101, 69–72, 1995.

    Article  Google Scholar 

  • Andersen, C. A. and J. R. Hinthorne, Ion microprobe mass analyzer, Science, 175, 853–860, 1972.

    Article  Google Scholar 

  • Bavassano, B., M. Dobrowolny, F. Mariani, and N. F. Ness, Radial evolution of power spectra of interplanetary Alfvénic turbulence, J. Geophys. Res., 87, 3616–3622, 1982.

    Google Scholar 

  • Ben, D., J. Bussey, and P. D. Spudis, Compositional studies of the Orientale, Humorum, Nectaris, and Crisium lunar basins, J. Geophys. Res., 105, 4235–4244, 2000.

    Article  Google Scholar 

  • Cladis, J. B., W. E. Francis, and R. R. Vondrak, Transport toward earth of ions sputtered from the moon’s surface by the solar wind, J. Geophys. Res., 99, 53–64, 1994.

    Article  Google Scholar 

  • Coleman, P. J., Jr., Turbulence, viscosity, and dissipation in the solar-wind plasma, Astrophys. J., 153, 371–388, 1968.

    Article  Google Scholar 

  • Cremonese, G. and S. Verani, High resolution observations of the sodium emission from the Moon, Adv. Space Res., 19(1), 1561–1569, 1997.

    Article  Google Scholar 

  • Denskat, K. U., H. J. Beinroth, and F. M. Neubauer, Interplanetary magnetic field power spectra with frequencies from 2.4 × 10 to the —5th HZ to 470 HZ from HELIOS-observations during solar minimum conditions, J. Geophys., 54, 60–67, 1983.

    Google Scholar 

  • Elphic, R. C., H. O. Funsten, III, B. L. Barraclough, D. J. McComas, M. T. Paffett, D. T. Vaniman, and G. Heiken, Lunar surface composition and solar wind-induced secondary ion mass spectrometry, Geophys. Res. Lett., 18, 2165–2168, 1991.

    Article  Google Scholar 

  • Feldman, P. D. and D. Morrison, The Apollo 17 ultraviolet spectrometer: Lunar atmosphere measurements revisited, Geophys. Res. Lett., 18(11), 2105–2109, 1991.

    Article  Google Scholar 

  • Flynn, B. and S. A. Stern, A spectroscopic survey of metallic species abundances in the lunar atmosphere, Icarus, 124, 530–536, 1996.

    Article  Google Scholar 

  • Freeman, J.W. and M. Ibrahim, Lunar electric fields, surface potential and associated plasma sheaths, Moon, 14, 103–114, 1975.

    Article  Google Scholar 

  • Funsten, R. C., R. C. Elphic, B. L. Barraclough, D. J. McComas, K. R. Moore, and J. E. Nordholt, Lunar and asteroid composition assessment using remote secondary ion mass spectrometry, Proc. Int. Symp. on Spectral Sensing Res., Maui, HI., 1332–1343, 1992.

    Google Scholar 

  • Gaddis, L. R., B. R. Hawke, M. S. Robinson, and C. Coombs, Compositional analyses of small lunar pyroclastic deposits using Clementine multispectral data, J. Geophys. Res., 105, 4245–4262, 2000.

    Article  Google Scholar 

  • Halekas, J. S., D. L. Mitchell, R. P. Lin, S. Frey, L. L. Hood, M. H. Acuña, and A. B. Binder, Mapping of crustal magnetic anomalies on the lunar near side by the Lunar Prospector electron reflectometer, J. Geophys. Res., 106(E11), 27,841–27,852, 2001.

    Article  Google Scholar 

  • Hilchenbach, M., D. Hovestadt, B. Klecker, and E. Mobius, Observation of energetic lunar pick-up ions near Earth, Adv. Space Res., 13(10), 321–324, 1993.

    Article  Google Scholar 

  • Hodges, R. R., Jr., Formation of the lunar atmosphere, Moon, 14, 139–157, 1975.

    Article  Google Scholar 

  • Hodges, R. R., Jr., J. H. Hoffman, T. T. J. Yeh, and G. K. Chang, Orbital search for lunar volcanism, J. Geophys. Res., 77(22), 4079–4085, 1972.

    Article  Google Scholar 

  • Killen, R. M. and W.-H. Ip, The surface-bounded atmospheres of Mercury and the Moon, Rev. Geophys., 37, 361–406, 1999.

    Article  Google Scholar 

  • Korotev, R. L., The great lunar hot spot and the composition and origin of the Apollo mafic (“LKFM”) impact-melt breccias, J. Geophys. Res., 105(E2), 4317–4345, 2000.

    Article  Google Scholar 

  • Lin, R. P., D. L. Mitchell, D. W. Curtis, K. A. Anderson, C. W. Carlson, J. McFadden, M. H. Acuña, L. L. Hood, and A. Binder, Lunar surface magnetic fields and their interaction with the solar wind: Results from Lunar Prospector, Science, 281, 1480–1484, 1998.

    Article  Google Scholar 

  • Madey, T. E., B. V. Yakshinskiy, V. N. Ageev, and R. E. Johnson, Desorption of alkali atoms and ions from oxide surfaces: Relative to the origins of Na and K in atmospheres of Mercury and the Moon, J. Geophys. Res., 103(E3), 5873–5877, 1998.

    Article  Google Scholar 

  • Mall, U., E. Kirsch, K. Cierpka, B. Wilken, A. Söding, F. Neubauer, G. Gloeckler, and A. Galvin, Direct observation of lunar pick-up ions near the Moon, Geophys. Res. Lett., 25(20), 3799–3802, 1998.

    Article  Google Scholar 

  • Managadze, G. G. and R. Z. Sagdeev, Chemical composition of small bodies of the solar system determined from the effects of solar-wind interaction with their surfaces, Icarus, 73, 294–302, 1988.

    Article  Google Scholar 

  • Mendillo, M., J. Baumgardner and B. Flynn, Imaging observations of the extended sodium atmosphere of the moon, Geophys. Res. Lett., 18, 2097–2100, 1991.

    Article  Google Scholar 

  • Potter, A. E. and T. H. Morgan, Discovery of the sodium and potassium vapor in the atmosphere of the Moon, Science, 241, 675–679, 1988.

    Article  Google Scholar 

  • Potter, A. E. and T. H. Morgan, Observation of the lunar sodium exosphere, Geophys. Res. Lett., 18, 2089–2092, 1991.

    Article  Google Scholar 

  • Potter, A. E. and T. H. Morgan, Coronagraphic observations of the lunar sodium exosphere near the lunar surface, J. Geophys. Res., 103, 8581–8586, 1998.

    Article  Google Scholar 

  • Potter, A. E., R. M. Killen, and T. H. Morgan, Variation of lunar sodium during passage of the Moon through the Earth’s magnetotail, J. Geophys. Res., 105(E6), 15,073–15,084, 2000.

    Article  Google Scholar 

  • Price, C. P. and C. S. Wu, The influence of strong hydromangetic turbulence on newborn cometary ions, Geophys. Res. Lett., 14, 856–859, 1987.

    Article  Google Scholar 

  • Smith, S. M., J. K. Wilson, J. Baumgardner, and M. Mendillo, Discovery of the distant lunar sodium tail and its enhancement following the Leonid meteor shower of 1998, Geophys. Res. Lett., 26, 1649–1652, 1999.

    Article  Google Scholar 

  • Smyth, W. H. and M. L. Marconi, Theoretical overview and modeling of the sodium and potassium atmospheres of the Moon, Astrophys. J., 443, 371–392, 1995.

    Article  Google Scholar 

  • Sprague, A. L., R. W. H. Kozlowski, D. M. Hunten, W. K. Wells, and F. A. Grosse, The sodium and potassium atmosphere of the Moon and its interaction with the surface, Icarus, 96, 27–42, 1992.

    Article  Google Scholar 

  • Stern, S. A., J. W. Parker, T. H. Morgan, B. C. Flynn, D. M. Hunten, A. L. Sprague, M. Mendillo, and M. C. Festou, An HST search for magnesium in the lunar atmosphere, Icarus, 127, 523–526, 1997.

    Article  Google Scholar 

  • Storms, H. A., K. F. Brown, and J. D. Stein, Evaluation of a cesium positive ion source for secondary ion mass spectrometry, Anal. Chem., 49, 2023–2030, 1977.

    Article  Google Scholar 

  • Terasawa, T., Particle scattering and acceleration in a turbulent plasma around comets, in Plasma Waves and Instabilities at Comets and Magnetospheres, Geophys. Monogr. Ser., vol. 53, edited by B. T. Tsurutani and H. Oya, pp. 41–49, AGU, Washington, D. C., 1989.

    Article  Google Scholar 

  • Tyler, A. L., W. H. Kozlowski, and D. M. Hunten, Observations of sodium in the tenuous lunar atmosphere, Geophys. Res. Lett., 15, 1141–1144, 1988.

    Article  Google Scholar 

  • Walbrige, E., Lunar Photoelectron Layer, J. Geophys. Res., 77, 3668–3687, 1973.

    Article  Google Scholar 

  • Yakshinskiy, B. V. and T. E. Madey, Photon-stimulated desorption as a substantial source of sodium in the lunar atmosphere, Nature, 400, 642–644, 1999.

    Article  Google Scholar 

  • Yokota, S., Y. Saito, K. Asamura, and T. Mukai, Development of an ion energy mass spectrometer for application on board three-axis stabilized spacecraft, Rev. Sci. Instrum., 76, 014501-1-8, 2005.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoichiro Yokota.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yokota, S., Saito, Y. Estimation of picked-up lunar ions for future compositional remote SIMS analyses of the lunar surface. Earth Planet Sp 57, 281–289 (2005). https://doi.org/10.1186/BF03352564

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352564

Key words

  • Picked-up lunar ions
  • lunar surface
  • compositional remote SIMS analysis