Skip to main content

Self-generation of phase coherence in parallel Alfvén turbulence

Abstract

Nonlinear evolution of Alfvén turbulence is discussed within the framework of the derivative nonlinear Schroedinger equation (DNLS), a subset of the hall-MHD equation set, which includes quasi-parallel propagating right- and left-hand polarized Alfvén wave modes. By numerically time integrating the equation with periodic boundary conditions, we discuss relationship between generation of wave phase coherence and self-organization of the system due to birth of Alfvén solitons.

References

  1. Carreras, B. A., V. E. Lynch, and G. M. Zaslavsky, Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model, Phys. Plasmas, 8(12), 5096–5103, 2001.

    Article  Google Scholar 

  2. del-Castillo-Negrete, D., B. A. Carreras, and V. E. Lynch, Fractional diffusion in plasma turbulence, Phys. Plasmas, 11(8), 3854–3864, 2004.

    Article  Google Scholar 

  3. Champeaux, S. et al., Remarks on the parallel propagating of small-amplitude dispersive Alfvén waves, Nonl. Proc. in Geophys., 6, 169–178, 1999.

    Article  Google Scholar 

  4. Chen, X. J. and W. K. Lam, Inverse scattaring transform for the derivative nonlinear Schrodinger equations with nonvanishing boundary conditions, Phys. Rev. E, 69, art. no. 066604, 2004.

  5. Ghosh, S. and K. Papadopoulos, The onset of Alfvénic turbulence, Phys. Fluids., 30(5), 1371–1387, 1987.

    Article  Google Scholar 

  6. Hada, T., Nonlinear evolution of Alfvén waves in space plasmas, in Nonlinear Processes in Physics, edited by A. S. Fokas, D. J. Kaup, A. C. Newell, and V. E. Zhakarov, pp. 169–174, Springer-Verlag, 1992.

    Google Scholar 

  7. Hada, T., D. Koga, and E. Yamamoto, Phase coherence of MHD waves in the solar wind, Space Sci. Rev., 107(1–2), 463–466, 2003.

    Article  Google Scholar 

  8. Kaup, D. J. and A. C. Newell, An exact solution for a derivative nonlinear Schrodinger equation, J. Math. Phys, 19, 798–801, 1978.

    Article  Google Scholar 

  9. Kawata, T. and H. Inoue, Exact solution of the derivative nonlinear Schrödinger equation under the nonvanishing conditions. J. Phys. Soc. Japan, 44, 1968–1976, 1978.

    Article  Google Scholar 

  10. Kawata, T., J. -I. Sakai, and N. Kobayashi, Inverse method for the mixed nonlinear Schrodinger equation and soliton solutions. J. Phys. Soc. Japan, 48, 1371–1379, 1980.

    Article  Google Scholar 

  11. Koga, D. and T. Hada, Phase coherence of foreshock MHD waves: wavelet analysis, Space. Sci. Rev, 107, 495–498, 2003.

    Article  Google Scholar 

  12. Kuramitsu, Y. and T. Hada, Acceleration of charged particles by large amplitude MHD waves: effect of wave spatial correlation, Geophys. Res. Lett., 27(5), 629–632, 2000.

    Article  Google Scholar 

  13. Medvedev, M. D., P. H. Diamond, V. I. Shevchenko, and V. L. Galinsky, Dissipative dynamics of collisionless nonlinear Alfvén wave trains, Phys. Rev. Lett., 78(26), 4934–4937, 1997.

    Article  Google Scholar 

  14. Metzler, R. and T. F. Nonnenmacher, Fractional diffusion, waiting-time distributions, and Cattaneo-type equations, Phys. Rev. E, 57(6), 6409–6414, 1998.

    Article  Google Scholar 

  15. Mio, K., T. Ogino, K. Minami, and S. Takeda, Modified nonlinear Schroedinger equation for Alfvén waves propagating along the magnetic field in cold plasmas. J. Phys. Soc. Japan, 41, 265–271, 1976.

    Article  Google Scholar 

  16. Mjølhus, E., Application off the reductive perturbation method to long hy-dromagnetic waves parallel to the magnetic field in a cold plasma, Report no. 48, Department of applied mathematics, Univ. Bergen, Norway, 1974.

    Google Scholar 

  17. Mjølhus, E., On the modulational instability of hydromagnetic waves parallel to the magnetic field, J. Plasma. Phys., 16, 321–334, 1976.

    Article  Google Scholar 

  18. Mjølhus, E. and T. Hada, Soliton theory of quasi-parallel Alfvén waves, in Nonlinear Waves and Chaos in Space Plasmas, edited by T. Hada and H. Matsumoto, pp. 121–169, Terrapub, Tokyo, 1997.

    Google Scholar 

  19. Mjølhus, E. and J. Wyller, Nonlinear Alfvén waves in a finite beta plasma, J. Plasma Phys., 40, 299–318, 1988.

    Article  Google Scholar 

  20. Rogister, A., Parallel propagation of nonlinear low-frequency waves in high-β plasma, Phys. Fluids, 14, 2733–2739, 1971.

    Article  Google Scholar 

  21. Sakai, J. -I. and B. Sonnerup, Modulational instability of finite amplitude dispersive Alfvén waves, J. Geophys. Res, 88, 9069–9078, 1983.

    Article  Google Scholar 

  22. Spangler, S. R., The evolution of nonlinear Alfvén waves subject to growth and damping, Phys. Fluids, 29(8), 2535–2547, 1986.

    Article  Google Scholar 

  23. Spangler, S. R., Kinetic effects on Alfvén-wave nonlinearity, 2. The modified nonlinear-wave equation, Phys. Fluids, B2(2), 407–418, 1990.

    Article  Google Scholar 

  24. Spangler, S. R. and J. P. Sheerin, Properties of Alfvén solitons in a finite-beta plasma, J. Plasma Phys., 27, 193–198, 1982.

    Article  Google Scholar 

  25. Zimbardo, G., A. Greco, and P. Veltri, Superballistic transport in tearing driven magnetic turbulence, Phys. Plasmas, 7(4), 1071–1074, 2000.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Y. Nariyuki.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nariyuki, Y., Hada, T. Self-generation of phase coherence in parallel Alfvén turbulence. Earth Planet Sp 57, e9–e12 (2005). https://doi.org/10.1186/BF03352580

Download citation

Key words

  • Alfvén waves
  • turbulence
  • complex system