Skip to main content

Volume 57 Supplement 6

Special Issue: Special Section for the 2004 Mid-Niigata Prefecture Earthquake (2)

Recursive travel-time inversion: A tool for real-time seismic tomography

Abstract

A new recursive inverse scheme is applied to a currently popular problem named seismic travel-time tomography, in order to enhance the efficiency and reliability in obtaining a new velocity model if a small number of new data are added to a large data set in the past. In comparison with conventional inverse schemes in seismic tomography, either least-squares or iterative types, this scheme does not require large amounts of matrix-type computations but utilizes the amount of modification in model parameters responsible for each new data set. We also introduce the computation of a collocation travel time (i.e., from a given station to every grid point) for the reference velocity model inverted by the data for all the past events, using a ray tracing scheme called the Huygens’ method (Saito, 2001), suitable to computations prior to a new event. Combining the above information already stored with the recursive inverse scheme, we can obtain a new or updated velocity model immediately after a new event takes place, because a temporal interval between two events is usually very long in a given local area. Since the model is revised at each recursive step, we perform ray tracings with the updated reference model to get more accurate ray paths and travel times than the conventional inversion schemes that use all the ray tracings for the same reference model. We first showed the validity and stability of the proposed method with synthetic data. We then applied the new approach to the P-wave travel-time data recorded in the Hidaka, south-central Hokkaido, Japan, region, and compared our result with other previous results. Our result shares the overall feature with the previous ones. In addition, a new low-velocity zone is detected in the east of the Hidaka mountains at the depth of 10 km, corresponding to the collision zone of two arcs, due to the use of the updated reference velocity model at each recursive step. We also confirmed that the order of data does not affect the final result, so that the present approach is shown as an appropriate tool for so-called real-time seismic tomography: a updated velocity model is immediately obtained at each time that a new event takes place, in order to monitor temporal variations of model parameters such as velocity structure on the real-time basis.

References

  • Aki, K., Overview, in Seismic Tomography: Theory and Practice, edited by H. M. Iyer and K. Hirahara, pp. 1–8, Chapman & Hall, London, 1993.

    Google Scholar 

  • Aki, K. and W. H. K. Lee, Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes: 1. A homogeneous initial model, J. Geophys. Res., 81, 4381–4399, 1976.

    Article  Google Scholar 

  • Aki, K. and P. G. Richards, Quantitative Seismology, vol. 2, pp. 641–719, W. H. Freeman and Comp., San Francisco, 1980.

    Google Scholar 

  • Aki, K., A. Christofferson, and E. S. Husebye, Determination of the three-dimensional seismic structure of the lithosphere, J. Geophys. Res., 82, 277–296, 1977.

    Article  Google Scholar 

  • Ding, Z., Y. Zhao, H. Ren, J. S. Nelson and Z. Chen, Real-time phase-resolved optical coherence tomography and optical Doppler tomography, Opt. Exp., 10, 236–245, 2002.

    Article  Google Scholar 

  • Foulger, G. R., B. R. Julian, A. M. Pitt, D. P. Hill, P. E. Malin, and E. Shalev, Three-dimensional crustal structure of Long Valley caldera, California, and evidence for the migration of CO2 under Mammoth Mountain, J. Geophys. Res., 108(B3), 2147, doi:10.1029/2000JB000041, 2003.

    Article  Google Scholar 

  • GPS Research Group, in The National Center for Atmospheric Research & the UCAR Office of Programs, http://www.gst.ucar.edu/gpsrg/, 2004.

    Google Scholar 

  • Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins, Global Positioning System: Theory and Practice, 5th Rev., 383 pp., Springer Verlag, Wien, 2001.

    Book  Google Scholar 

  • Iwasaki, T., O. Ozel, T. Moriya, S. Sakai, S. Suzuki, G. Aoki, T. Maeda, and T. Iidaka, Lateral structural variations across a collision zone in central Hokkaido, Japan as revealed from seismic refraction profilings, Geophy. J. Int., 132, 435–457, 1998.

    Article  Google Scholar 

  • Iwasaki, T. and Research Group of HOKKAIDO TRANSECT, Crustal section across the Hidaka collision zone, Hokkaido, Japan as inferred from seismic refraction/reflection profiling, in Abst. XXIII Gen. Assem. Int. Union Geod. Geophys., SS03/07A/A02-007, 2003.

    Google Scholar 

  • Iyer, H. M. and K. Hirahara (eds), Seismic Tomography: Theory and Practice, 842 pp., Chapman & Hall, London, 1993.

    Google Scholar 

  • Katsumata, K. et al. (64 authors), Distribution of Hypocenters and Focal Mechanisms in and around the Hidaka Arc-Arc Collision Zone Revealed by a Dense Temporary Seismic Network, Bull. Earthq. Res. Inst., 77, 199–223, 2002 (In Japanese with English abstract).

    Google Scholar 

  • Katsumata, K., N. Wada, and M. Kasahara, Newly imaged shape of the deep seismic zone within the subducting Pacific plate beneath the Hokkaido corner, Japan-Kurile arc-arc junction, J. Geophys. Res., 108(B12), 2565, doi:10.1029/2002JB002175, 2003.

    Article  Google Scholar 

  • Miyamachi, H. and T. Moriya, Velocity structure beneath the Hidaka Mountains in Hokkaido, Japan, J. Phys. Earth, 32, 13–42, 1984.

    Article  Google Scholar 

  • Miyamachi, H. and T. Moriya, Velocity structure and aftershock distribution of the 1982 Urakawaoki earthquake, J. Phys. Earth, 35, 309–326, 1987.

    Article  Google Scholar 

  • Moriya, T., H. Miyamachi, O. Ozel, N. Ozel, T. Iwasaki, and M. Kasahara, Collision structure and seismotectonics of the Hidaka Mountains, Hokkaido, Japan, Struc. Geol., 42, 15–30, 1997 (in Japanese with English abstract).

    Google Scholar 

  • Moriya, T., H. Okada, T. Matsushima, S. Asano, T. Yoshi, and A. Ikami, Collision structure in the upper crust beneath the southwestern foot of the Hidaka Mountains, Hokkaido, Japan, as derived from explosion seismic observations, Tectonophys., 290, 181–196, 1998.

    Article  Google Scholar 

  • Murai, Y., S. Akiyama, K. Katsumata, T. Takanami, T. Yamashina, T. Watanabe, I. Cho, M. Tanaka, A. Kuwano, N. Wada, H. Shimamura, I. Furuya, D. Zhao, and R. Sanda, Delamination structure imaged in the source area of the 1982 Urakawa-oki earthquake, Geophys. Res. Lett., 30, 1490, doi:10.1029/2002GL016459, 2003.

    Article  Google Scholar 

  • Nishi, K., A three-dimensional robust seismic ray tracer for volcanic regions, Earth Planets Space, 53, 101–109, 2001.

    Article  Google Scholar 

  • Nishigami, K., Deep crustal heterogeneity along and around the San Andreas fault system in central California and its relation to the segmentation, J. Geophys. Res., 105, 7983–7998, 2000.

    Article  Google Scholar 

  • Niu, F., P. G. Silver, R. Nadaeu, and T. McEvilly, Stress-induced migration of seismic scatters associated with the 1993 Parkfield aseismic transient, Nature, 426, 544–548, 2003.

    Article  Google Scholar 

  • Nolet, G. (ed.), Seismic Tomography: With Applications in Global Seismology and Exploration Geophysics, Kluwer Academic Pub., 386 pp., 1987.

    Google Scholar 

  • Paige, C. and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares, Assoc. Comput. Mach. Trans. Math. Software, 8, 43–71, 1982.

    Article  Google Scholar 

  • Park, B. H., M. D. Pierce, B. Cense, and J. F. de Boer, Real-time multifunctional optical coherence tomography, Opt. Exp., 11, 782–793, 2003.

    Article  Google Scholar 

  • Qin, F., Y. Luo, K. Olsen, W. Cai, and G. T. Schuster, Finite-difference solution of the eikonal equation along expanding wavefronts, Geophysics, 57, 478–487, 1992.

    Article  Google Scholar 

  • Rawlinson, N. and M. Sambridge, Wavefront evolution in strongly heterogeneous layered media using the fast marching method, Geophys. J. Int., 156, 631–647, 2004.

    Article  Google Scholar 

  • Rodgers, C. D., Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation, Rev. Geophys. Space Phys., 14, 609–624, 1976.

    Article  Google Scholar 

  • Saito, H., Seismic Traveltime Tomography for Shallow Subsurface Explorations, Ph.D. thesis, 126 pp., Hokkaido University, Sapporo, 2001.

    Google Scholar 

  • Sen, M. and P. L. Stoffa, Global Optimization Methods in Geophysical Inversion, Elsevier, 281 pp., 1995.

    Google Scholar 

  • Shearer, P. M., Introduction to Seismology, Cambridge Univ. Press, 260 pp., 1999.

    Google Scholar 

  • Taira, T. and K. Yomogida, Imaging of three-dimensional small-scale heterogeneities in the Hidaka, Japan region: Coda spectral analysis, Geo-phys. J. Int., 158, 998–1008, 2004.

    Article  Google Scholar 

  • Takanami, T., Three-dimensional seismic structure of the crust and upper mantle beneath the orogenic belts in southern Hokkaido, Japan, J. Phys. Earth, 30, 87–104, 1982.

    Article  Google Scholar 

  • Tsumura, N., H. Ikawa, T. Ikawa, M. Shinohara, T. Ito, K. Arita, T. Moriya, G. Kimura, and T. Ikawa, Delamination-wedge structure beneath Hi-daka collision zone, central Hokkaido, Japan inferred from seismic reflection profiling, Geophys. Res. Lett., 26, 1057–1060, 1999.

    Article  Google Scholar 

  • Vidale, J. E., Finite-difference calculation of traveltimes in three dimensions, Geophysics, 55, 521–526, 1990.

    Article  Google Scholar 

  • Wunsch, C., Using data with models: Ill-posed problems, in Oceano-graphic and Geophysical Tomography, edited by Y. Desaubies, A. Tarantola, and J. Zinn-Justin, pp. 203–248, North-Holland, Amsterdam, 1990.

    Google Scholar 

  • Zeng, Y., Deterministic and stochastic modeling of the high-frequency Seismic wave generation and propagation in the lithosphere, Ph.D. thesis, Univ. of South. Calif., Los Angeles, 1991.

    Google Scholar 

  • Zhao, D., A. Hasegawa, and S. Horiuchi, Tomographic imaging of P and S wave velocity structure beneath northeastern Japan, J. Geophys. Res., 97, 19909–19928, 1992.

    Article  Google Scholar 

  • Zvyagin, A. V., J. B. FitzGerald, K. K. M. B. D. Silva, and D. D. Sampson, Real-time detection technique for Doppler optical coherence tomography, Opt. Lett., 25, 1645–1647, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Yomogida.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ogiso, M., Yomogida, K. & Katsumata, K. Recursive travel-time inversion: A tool for real-time seismic tomography. Earth Planet Sp 57, 477–489 (2005). https://doi.org/10.1186/BF03352582

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352582

Key words

  • Seismic tomography
  • recursive inverse scheme
  • velocity structure
  • Hidaka mountains