Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Incoherent radar spectra in the auroral ionosphere in the presence of a large electric field: The effect of O+-O+ Coulomb collisions

Abstract

We have used Monte Carlo simulations of O+ velocity distributions in the high latitude F- region to improve the calculation of incoherent radar spectra in auroral ionosphere. The Monte Carlo simulation includes ionneutral, O+-O collisions (resonant charge exchange and polarization interaction) as well as O+-O+ Coulomb self-collisions. At high altitudes, atomic oxygen O and atomic oxygen ion O+ dominate the composition of the auroral ionosphere and consequently, the influence of O+-O+ Coulomb collisions becomes significant. In this study we consider the effect of O+-O+ Coulomb collisions on the incoherent radar spectra in the presence of large electric field (100 mVm-1). As altitude increases (i.e. the ion-to-neutral density ratio increases) the role of O+-O+ Coulomb self-collisions becomes significant, therefore, the one-dimensional, 1-D, O+ ion velocity distribution function becomes more Maxwellian and the features of the radar spectrum corresponding to non-Maxwellian ion velocity distribution (e.g. baby bottle and triple hump shapes) evolve to Maxwellian ion velocity distribution (single and double hump shapes). Therefore, O+-O+ Coulomb self-collisions act to isotropize the 1-D O+ velocity distribution by transferring thermal energy from the perpendicular direction to the parallel direction, however the convection electric field acts to drive the O+ ions away from equilibrium and consequently, non-Maxwellian O+ ion velocity distributions appeared. Therefore, neglecting O+-O+ Coulomb self-collisions overestimates the effect of convection electric field.

References

  1. Barakat, A. R. and D. Hubert, Comparison of Monte Carlo simulation and polynomial expansions of auroral non-Maxwellian distributions, 2, the 1-D representation, Ann. Geophysicae, 8, 697–704, 1990.

    Google Scholar 

  2. Barakat, A. R., D. Hubert, and J. P. St.-Maurice, Generating a synthetic incoherent scattering radar spectrum using a Monte Carlo simulation, EoS, 71, 1503, 1990.

    Google Scholar 

  3. Barakat, A. R., R. W. Schunk, and J. P. St.-Maurice, Monte Carlo calculations of velocity distributions in the auroral ionosphere, J. Geophys. Res., 88, 3237–3241, 1983.

    Article  Google Scholar 

  4. Barghouthi, I. A. and N. A. Qatanani, Monte Carlo simulation of Maxwell molecule interactions in space plasma, Indian J. Phys., 77B(2), 241–245, 2003.

    Google Scholar 

  5. Barghouthi, I. A., A. R. Barakat, and R. W. Schunk, Effect of ion self collisions on the non-Maxwellian ion velocity distributions in the high-latitude F-region, EoS, 72, 365, 1991.

    Google Scholar 

  6. Barghouthi, I. A., A. R. Barakat, and R. W. Schunk, A Monte Carlo simulation of the effect of ion self-collisions on the ion velocity distribution function in the high-latitude F-region, Ann. Geophysicae, 12, 1076–1084, 1994.

    Article  Google Scholar 

  7. Barghouthi, I. A., E. I. Elias, M. A. Abu Samra, N. A. Qatanani, and M. S. Issa, Monte Carlo simulation of O+ behavior in the auroral ionosphere, J. Phys. Soc. Jpn., 72(11), 2003.

    Google Scholar 

  8. Cole, K. D., Atmospheric excitation and ionization by ions in strong auroral and man-made electric fields, J. Atmos. Terr. Phys., 33, 1241–1249, 1971.

    Article  Google Scholar 

  9. Gaimard, P., C. Lathuillere, and D. Hubert, Non-Maxwellian studies in the auroral F-region: a new analysis of incoherent scatter spectra, J. Atmos. Terr. Phys., 58, 415–433, 1996.

    Article  Google Scholar 

  10. Gaimard, P., J. P. St.-Maurice, C. Lathuillere, and D. Hubert, On the improvement of analytical calculations of collisional auroral ion velocity distributions using recent Monte Carlo results, J. Geophys. Res., 103, 4079–4095, 1998.

    Article  Google Scholar 

  11. Hubert, D., Auroral ion velocity distribution function: Generalized polynomial solution of Boltzmann equation, Planet. Space Sci., 31, 119–127, 1983.

    Article  Google Scholar 

  12. Hubert, D., Non-Maxwellian velocity distribution functions and incoherent scattering of radar waves in the auroral ionosphere, J. Atmos. Terr. Phys., 46, 601–611, 1984.

    Article  Google Scholar 

  13. Hubert, D. and A. R. Barakat, Comparison of Monte Carlo simulation and polynomial expansion of auroral Non-Maxwellian distributions, Part 1: the 3-D representation, Ann. Geophysicae, 8, 687–696, 1990.

    Google Scholar 

  14. Hubert, D. and F. Leblanc, The auroral O+ non-Maxwellian velocity distribution function revisited, Ann. Geophysicae, 15, 249–254, 1997.

    Google Scholar 

  15. Hubert, D., N. Bonnard, C. Lathuillere, and W. Kofman, A new scenario for the measurement of the auroral plasma parameters in the non-Maxwellian state, Geophys. Res. Lett., 20, 2691–2694, 1993.

    Article  Google Scholar 

  16. Kikuchi, K., J. P. St.-Maurice, and A. R. Barakat, Monte Carlo computations of F-region incoherent radar spectra at high latitudes and the use of a simple method for non-Maxwellian spectral calculations, Ann. Geo-physicae, 7, 183–194, 1989.

    Google Scholar 

  17. Kinzelin, E. and D. Hubert, Ion velocity distribution function in the upper auroral F-region. 1. Phenomenological approach, J. Geophys. Res., 97, 4061–4072, 1992.

    Article  Google Scholar 

  18. Lockwood, M., B. J. I. Bromage, R. B. Horne, J. P. St.-Maurice, D. Willis, and S. W. H. Cowley, Non-Maxwellian ion velocity distributions observed using EISCAT, Geophys. Res. Lett., 14, 111–114, 1987.

    Article  Google Scholar 

  19. McCrea, I. W., M. Lester, T. R. Robinson, J. P. St.-Maurice, N. M. Wade, and T. B. Jones, Derivation of the ion temperature partition coefficients from the study of ion frictional heating events, J. Geophys. Res., 98, 15,701–15,715, 1993.

    Article  Google Scholar 

  20. Ogawa, Y., R. Fujii, S. C. Buchert, S. Nozawa, S. Watanabe, and A. P. van Eyken, Simultaneous EISCAT Svalbard and VHF radar observations of ion upflows at different aspect angles, Geophys. Res. Lett., 27(1), 81–84, 2000.

    Article  Google Scholar 

  21. Perraut, S., A. Brekke, M. Baron, and D. Hubert, EISCAT measurements of ion temperatures which indicate non-isotropic ion velocity distributions, J. Atoms. Terr. Phys., 46, 531–543, 1984.

    Article  Google Scholar 

  22. Raman, R. S. V., J. P. St-Maurice, and R. S. B. Ong, Incoherent scattering of radar waves in the auroral ionosphere, J. Geophys. Res., 86, 4751–4762, 1981.

    Article  Google Scholar 

  23. Salah, J. E., Interim standard for the ion-neutral atomic oxygen collision frequency, Geophys. Res. Lett., 20, 1543–1546, 1993.

    Article  Google Scholar 

  24. St.-Maurice, J. P. and R. W. Schunk, Auroral ion velocity distributions using a relaxation model, Planet. Space Sci., 21, 1115–1130, 1973.

    Article  Google Scholar 

  25. St.-Maurice, J. P. and R. W. Schunk, Use of generalized orthogonal polynomial solutions of Boltzmann equation in certain aeronomy problems: auroral ion velocity distributions, J. Geophys. Res., 81, 2145–2154, 1976.

    Article  Google Scholar 

  26. St.-Maurice, J. P. and R. W. Schunk, Ion velocity distributions in the high-latitude ionosphere, Rev. Geophys. Space Phys., 17, 99–133, 1979.

    Article  Google Scholar 

  27. Takisuka, T. and H. Abe, A binary collision model for plasma simulation with a particle code, J. Comp. Phys., 25, 205–219, 1977.

    Article  Google Scholar 

  28. Tereshchenko, V. D., E. D. Tereshchenko, and H. Kohl, The incoherent scattering of radio waves in a non-Maxwellian plasma: The effect of Coulomb collisions, J. Geophys. Res., 96, 17,591–17,598, 1991.

    Article  Google Scholar 

  29. Winkler, E., J. P. St.-Maurice, and A. R. Barakat, Results from improved Monte Carlo calculations of auroral ion velocity distributions, J. Geophys. Res., 97, 8399–8423, 1992.

    Article  Google Scholar 

  30. Winser, K. J., G. O. L. Jones, and P. J. S. Williams, A quantitative study of the high-latitude ionospheric trough using EISCAT’s common programs, J. Atoms. Terr. Phys., 48, 893–904, 1986.

    Article  Google Scholar 

  31. Winser, K. J., M. Lockwood, and G. O. L. Jones, Non-thermal plasma observations using EISCAT: Aspect angle dependence, Geophys. Res. Lett., 14, 957–960, 1987.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. A. Barghouthi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barghouthi, I.A. Incoherent radar spectra in the auroral ionosphere in the presence of a large electric field: The effect of O+-O+ Coulomb collisions. Earth Planet Sp 57, 515–520 (2005). https://doi.org/10.1186/BF03352585

Download citation

Key words

  • Incoherent radar spectra
  • auroral ionosphere
  • Coulomb collision
  • convection electric field
  • Monte Carlo simulation