Skip to main content

A simulation analysis to optimize orbits for a tropical GPS radio occultation mission

Abstract

Space-based Radio Occultation (RO) measurements using a GPS receiver on a low Earth orbiter (LEO) provide accurate atmospheric refractivity profiles. EQUatorial Atmospheric Research Satellite (EQUARS) is a planned satellite mission carrying a GPS receiver for RO measurements, whose main focus is to study the vertical coupling process in the equatorial atmosphere and ionosphere through upward propagating atmospheric waves. This paper presents a model simulation to determine the best practical orbital parameters of a LEO satellite for GPS occultation, which provides dense occultation coverage from 20°S to 20°N and sparser coverage extending to 30°S and 30°N. Constellations of 29 GPS satellites are computed every 10 sec using the six Keplerian parameters based on real almanac data, while various orbits of LEO satellite are computed by varying orbital parameters, especially orbital altitude and inclination. Then, the occultation events are simulated under the assumption that the ray path between the occulting GPS and LEO satellites is a straight line. The simulation analysis shows that altitude and inclination angle of orbit are considered as principal parameters among the Keplerian parameters to accomplish the RO measurements in the equatorial region. Taking into account the long-lived mission, an avoidance of ionospheric F-layer influences, and practical antenna field of view, the best practical orbit for RO measurement in the equatorial region has an altitude of 750 km and an inclination of 20°. LEO on this orbit is expected to provide 530 RO events per day. The analysis also shows that three LEOs in that orbit with 120° separation can provide atmospheric profiles at least once every 6 h within 1000 km from an arbitrary station in the equator.

References

  • Eyre, J. R., Assimilation of radio occultation measurements into a numerical weather prediction system, Tech. Memo 199, 22 pp., Eur. Cent. for Medium-Range Weather Forecasts, Reading, England, 1994.

  • Kursinski, E. R., G. A. Hajj, K. R. Hardy, J. T. Schofield, and R. Linfield, Observing Earth’s atmosphere with radio occultation measurement using the Global Positioning System, J. Geophys. Res., 102, 23429–23465, 1997.

    Article  Google Scholar 

  • Larsen, G. B., K. B. Lauristen, F. Rubek, and M. B. Sorensen, GRAS-SAF Radio Occultation Data from EPS/Metop, in Occultations for Probing Atmosphere and Climate, edited by G. Kirchengast, U. Foelsche, and A. K. Steiner, pp. 111–118, Springer, Germany, 2004.

    Chapter  Google Scholar 

  • Rocken, C., R. Anthes, M. Exner, D. Hunt, S. Sokolovskiy, R. Ware, Gorbunov, W. Schreiner, D. Feng, B. Herman, Y.-H. Kuo, and X. Zou, Analysis and validation of GPS/MET data in the neutral atmosphere, J. Geophys. Res., 102, 29849–29866, 1997.

    Article  Google Scholar 

  • Rocken, C., Y.-H. Kuo, Schreiner, D. Hunt, S. Sokolovskiy, and C. McCormick, COSMIC System Description, Terrestrial Atmos. Oceanic Sci., 11, 21–52, 2000.

    Google Scholar 

  • Tsuda, T., K. Hocke, and H. Takahashi, Utility of occultations for atmospheric wave activity studies: results of GPS/MET data analysis and future plan, in Occultations for Probing Atmosphere and Climate, edited by G. Kirchengast, U. Foelsche and A. K. Steiner, 345–352, Springer, Germany, 2004.

    Chapter  Google Scholar 

  • Ware, R., M. Exner, D. Feng, M. Gorbunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anthes, S. Businger, and K. Trenberth, GPS sounding of the atmosphere from Low Earth Orbit: preliminary results, Bull. Am. Meteorol. Soc., 77, 19–40, 1996.

    Article  Google Scholar 

  • Wickert, J., C. Reigber, G. Beyerle, R. Konig, C. Marquardt, T. Schmidt, L. Grunwaldt, R. Galas, T. K. Meehan, W. G. Melbourne, and K. Hocke, Atmospheric sounding by GPS radio occultations: first results from CHAMP, Geophys. Res. Lett., 28, 3263–3266, 2001.

    Article  Google Scholar 

  • Xu, G., GPS Theory, Algorithms and Applications, 315 pp., Springer, Germany, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf Mousa.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Mousa, A., Aoyama, Y. & Tsuda, T. A simulation analysis to optimize orbits for a tropical GPS radio occultation mission. Earth Planet Sp 58, 919–925 (2006). https://doi.org/10.1186/BF03352596

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352596

Key words