Skip to main content

Synthetic Aperture Radar Interferometry: Separation of atmospheric artifacts from effects due to the topography and the terrain displacements

Abstract

This paper reports the new concept of possibly applying independent component analysis (ICA) on Synthetic Aperture Radar (SAR) satellite images for separating atmospheric artifacts from effects due to topography and terrain displacements. Specifically, the FastICA algorithm is applied on simulations of SAR interferograms with the purpose of extracting the different independent sources. Results show the existence of significant correlations between estimated and original components, with correlation coefficients above 0.9 and statistical confidence level above 99.9%. These findings suggest that ICA might provide a useful tool in SAR data processing, with a specific crucial usefulness in cases of an absence of ground truth knowledge, as in the cases of insufficient meteorological information at specific observational times or in satellite monitoring of remote lands. Applications on real data show that the topographical component is automatically derived by the FastICA algorithm for whatever real data set. What is different is that the extraction of terrain displacements may require some a priori information for separating different kinds of landslides and that the use of possible semi-blind ICA/FastICA approach might be considered, dependent on the specific data set.

References

  1. Berardino, P., G. Fornaro, R. Lanari, and E. Sansosti, A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE T. Geosc. Remote, 40, 2375, 2002.

    Article  Google Scholar 

  2. Cardoso, J. F., Blind signal separation; statistical principles, Proc. IEEE, 86, 2009, 1998.

  3. Comon, P., Independent component analysis—a new concept?, Signal Process., 36, 287, 1994.

    Article  Google Scholar 

  4. Ferretti, A., A. Monti Guarnieri, C. Prati, and F. Rocca, Multibase-line interferometric techniques and applications, Proc. Fringe ′96, ES-RIN/ESA, Frascati (Italy), 1996.

    Google Scholar 

  5. Ferretti, A., C. Prati, and F. Rocca, Permanent scatters in SAR interferometry, IEEE T. Geosc. Remote, 39, 8, 2001.

    Article  Google Scholar 

  6. Fujiwara, S., T. Nishimura, M. Murakami, H. Nakagawa, and M. Tobita, 2.5-D surface deformation of M6.1 earthquake near Mt. Iwate detected by SAR interferometry, Geophys. Res. Lett., 27, 2049, 2000.

    Article  Google Scholar 

  7. Funaro, M., E. Oja, and H. Valpola, Artefact detection in astrophysical image data using independent component analysis, Proc. 3rd Int. Conf. ICA Blind Source Separation, edited by T. W. Lee et al., San Diego, Calif., Dec. 9–12, 2001.

  8. Hanssen, R. F., Radar Interferometry, Kluwer Academic Publishers, Dordrecht, 2001.

    Google Scholar 

  9. Hyvärinen, A., New approximations of differential entropy for independent component analysis and projection pursuit, in Advances in Neural Information processing Systems, vol.10, pp. 273–279, 1998.

    Google Scholar 

  10. Hyvärinen, A. and E. Oja, fast fixed-point algorithm for independent component analysis, Neural Comp., 9, 1483, 1997.

    Article  Google Scholar 

  11. Hyvärinen, A. and E. Oja, Independent component analysis: algorithms and applications, Neural Networks, 13, 411, 2000.

    Article  Google Scholar 

  12. Hyvärinen, A., J. Karhunen, and E. Oja, Independent Component Analysis, Wiley Interscience, New York, 2001.

    Google Scholar 

  13. Massonnet, D. and K. L. Feigl, Radar interferometry and its application to change in the Earth’s surface, Rev. Geophys., 36, 441, 1998.

    Article  Google Scholar 

  14. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing, Cambridge Univ. Press, New York, 1990.

    Google Scholar 

  15. Rocca, F., C. Prati, and A. Ferretti, An overview of SAR interferometry, Proc. 3re ERS Symp, Florence, http://florence97.ers-symposium.org, 1997.

    Google Scholar 

  16. Saastamoinen, J., Contribution to the theory of atmospheric refraction, Bull. Geodesique, 105, 106, 1972.

    Article  Google Scholar 

  17. Valpola and Särelä, A fast semi-blind source separation algorithm, Tech. Rep. A66, Lab of Computer and Information Science, Helsinki University of Technolory (Finland), 2002.

    Google Scholar 

  18. Zebker, H. and R. Goldstein, Topographic mapping from SAR observation, J. Geophys. Res., 911, 4993, 1986.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paola Ballatore.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ballatore, P. Synthetic Aperture Radar Interferometry: Separation of atmospheric artifacts from effects due to the topography and the terrain displacements. Earth Planet Sp 58, 927–935 (2006). https://doi.org/10.1186/BF03352597

Download citation

Key words

  • Earth observation by satellite
  • synthetic aperture radar interferometry
  • remote sensing
  • ICA
  • blind source separation
  • artifacts in images