Skip to main content

Numerical simulation of tsunamis generated by caldera collapse during the 7.3 ka Kikai eruption, Kyushu, Japan

Abstract

The relationship between tsunamis and scales of caldera collapse during a 7.3 ka eruption of the Kikai volcano were numerically investigated, and a hypothetical caldera collapse scale was established. Wave height, arrival time, and run-up height and distance were determined at some locations along the coastline around Kikai caldera, using non-linear long-wave equations and caldera collapse models using parameters showing the difference in geometry between pre- and post-collapse and the collapse duration. Whether tsunamis become large and inundations occur in coasts is estimated by the dimensionless collapse speed. Computed tsunamis were then compared with geological characteristics found in coasts. The lack of evidence of tsunami inundation at Nejime, 65 km from the caldera, suggests that any tsunamis were small; indicating that the upper limit of dimensionless caldera collapse speed was 0.01. On the other hand, on the coast of the Satsuma Peninsula, 50 km from the caldera, geological characteristics suggests that tsunamis did not inundate, or that even if tsunamis inundated the area, the traces of a tsunami have been eroded by a climactic pyroclastic flow or the tsunami itself and they have not been left. In numerical computations, when a dimensionless caldera collapse speed is more than 0.003, tsunami can inundate this area.

References

  1. Aoki, K., F. Imamura, and N. Shuto, Proceedings Coastal Engineering Japan, 44, 326–330, 1997 (in Japanese).

    Article  Google Scholar 

  2. Arai, H., T. Oba, H. Kitazato, Y. Horibe, and H. Machida, Late Quaternary tephrochronology and paleo-oceanography of the sediments of the Japan Sea, The Quat. Res. (Daiyonki-Kienkyu), 20, 209–230, 1981 (in Japanese with English abstract).

    Article  Google Scholar 

  3. Aramaki, S., Formation of the Aira caldera, Southern Kyushu, 22,000 years ago, J. Geophys. Res., 89, 8485–8501, 1984.

    Article  Google Scholar 

  4. Aramaki, S. and T. Ui, The Aira and Ata pyroclastic flows and related caldera and depressions in southern Kyushu, Japan, Bull. Volcanol., 29, 29–47, 1966.

    Article  Google Scholar 

  5. Beget, J. E., Volcanic Tsunami, in Encyclopedia of Volcanoes, edited by H. Sigurdsson, Academic Press, pp. 1005–1013, 2000.

    Google Scholar 

  6. Bryant, E., Tsunami—the understand hazard, 320 pp, Cambridge University Press, UK, 2001.

    Google Scholar 

  7. Carey, S., H. Sigurdsson, C. Mandeville, and S. Bronto, Pyroclastic flows and surges over water: an example from the 1883 Krakatau eruption, Bull. Volcanol., 57, 493–511, 1996.

    Article  Google Scholar 

  8. Carey, S., H. Sigurdsson, C. Mandeville, and S. Bronto, Volcanic hazards from pyroclastic flow discharge into the sea: Examples from 1883 eruption of Krakatau, Indonesia, Geol. Soc. Am. Sp. Pap., 345, 1–14, 2000.

    Google Scholar 

  9. Cas, R. A. F. and J. V. Wright, Subaqueous pyroclastic flows and ignimbrites: an assessment, Bull. Volcanol., 53, 357–380, 1991.

    Article  Google Scholar 

  10. Dawson, A. G. and S. Shi, Tsunami deposits, Pure Appl. Geophys., 157, 875–897, 2000.

    Article  Google Scholar 

  11. Francis, P. W., The origin of the 1883 Krakatau tsunamis, J. Volcanol. Geotherm. Res., 25, 349–363, 1985.

    Article  Google Scholar 

  12. Freundt, A. and H. Schmincke, Lithic-enriched segregation bodies in pyroclastic flow deposits of Laacher See volcano (East Eifel, Germany), J. Volcanol. Geotherm. Res., 25, 193–224, 1985.

    Article  Google Scholar 

  13. Freundt, A., S. Kutterolf, H. Wehrmann, H-U. Schmincke, and W. Strauch, Eruption of the dacite to andesite zoned Mateare Tephra, and associated tsunamis in Lake Managua, Nicaragua, J. Volcanol. Geotherm. Res., 149, 103–123, 2006.

    Article  Google Scholar 

  14. Gelfenbaum, G. and B. Jaffe, Erosion and sedimentation from the 17 July, 1998 Papua New Guinea Tsunami, Pure. Appl. Geophys., 160, 1969–1999, 2003.

    Article  Google Scholar 

  15. Goto, C. and Y. Ogawa, Numerical method of tsunami simulation with the Leap-frog scheme, Translated for the TIME Project by N. Shuto, Department of Civil Engineering, Tohoku University, 1992.

  16. Goto, T. and N. Shuto, Proceedings Coastal Engineering Japan, 27, 80–84, 1980 (in Japanese).

    Article  Google Scholar 

  17. Gray, J. P. and J. J. Monaghan, Caldera collapse and the generation of waves, Geochem., Geophys. Geosyst., 4(2), 1015, doi:10.1029/2002GC000411, 2003.

    Article  Google Scholar 

  18. Ishihara, T., The gravity anomalies on the Kikai caldera and its vicinity, Bull. Geol. Surv. Jap., 28, 575–588, 1976 (in Japanese with English abstract).

    Google Scholar 

  19. Kawanabe, Y. and G. Saito, Volcanic activity of the Satsuma-Iwojima area during the past 6500 years, Earth Planets Space, 54, 295–301, 2002.

    Article  Google Scholar 

  20. Latter, J. H., Tsunamis of volcanic origin: summary of causes, with particular reference to Krakatoa, 1883, Bull. Volcanol., 44, 467–490, 1981.

    Article  Google Scholar 

  21. Lavallee, Y., J. Stix, B. Kennedy, M. Richer, and M. Longpre, Caldera subsidence in areas of variable topographic relief: results from analogue modeling, J. Volcanol. Geotherm. Res., 129, 219–236, 2004.

    Article  Google Scholar 

  22. Machida, H. and F. Arai, Akahoya Ash—A Holocene widespread tephra erupted from the Kikai Caldera, South Kyusyu, Japan, The Quat. Res. (Daiyonki-Kienkyu), 17, 143–163, 1978 (in Japanese with English abstract).

    Article  Google Scholar 

  23. Machida, H. and F. Arai, Atlas of Tephra in and around Japan, 336 pp, University of Tokyo Press, 2003 (in Japanese).

    Google Scholar 

  24. Maeno, F., Dynamics and evolution of a marine caldera-forming eruption at Kikai volcano, Japan, PhD Theses, 150 pp, Tohoku University, 2006.

    Google Scholar 

  25. Maeno, F. and H. Taniguchi, Spatiotemporal evolution of pyroclastic density currents and eruption dynamics during the 7.3 ka marine calderaforming eruption, Kikai Volcano, southern Kyushu, Japan, J. Volcanol. Geotherm. Res., submitted.

  26. Marti, J., G. J. Ablay, L. T. Redshaw, and R. S. J. Sparks, Experimental studies of collapse calderas, J. Geol. Soc. Lond., 151, 1994.

  27. Matsui, T., F. Imamura, E. Tajika, Y. Nakano, and Y. Fujisawa, Generation and propagation of a tsunami from the Cretaceous-Tertiary impact event, Geol. Soc. Am. Sp. Pa., 356, 69–77, 2002.

    Google Scholar 

  28. McCoy, F. W. and G. Heiken, The Late-Bronze Age explosive eruption of Thera (Santorini), Greece: Regional and local effects, Geol. Soc. Am. Sp. Pap., 345, 43–70, 2000.

    Google Scholar 

  29. Minoura, K., F. Imamura, U. Kuran, T. Nakamura, G. A. Papadopoulos, T. Takahashi, and A. C. Yalciner, Discovery of Minoan tsunami deposits, Geology, 28, 59–62, 2000.

    Article  Google Scholar 

  30. Nishimura, Y. and N. Miyaji, Tsunami deposits from the 1993 Southwest Hokkaido Earthquake and the 1640 Hokkaido Komagatake Eruption, Northern Japan, Pure Appl. Geophys., 144, 719–733, 1995.

    Article  Google Scholar 

  31. Nomanbhoy, N. and K. Satake, Generation mechanism of tsunamis from the 1883 Krakatau eruption, Geophys. Res. Let., 22, 509–512, 1995.

    Article  Google Scholar 

  32. Okamura, M., H. Matsuoka, and Okamura Makoto Research Committee of Nagasaki Prefecture on Unzen Active Fault System, The evidence of huge Akahoya tsunami recorded in the submarine sediments, 2005 Joint meeting for Earth and Planetary Science, Abstract J027-P025, 2005.

    Google Scholar 

  33. Okuno, M., D. Fukushima, and T. Kobayashi, Tephrochronology in Southern Kyushu, SW Japan: tephra layers for the past 100,000 years, J. Soc. Human History, 12, 9–23, 2000.

    Google Scholar 

  34. Ono, K., T. Soya, and T. Hosono, Geology of the Satsuma-Io-Jima District. Quadrangle Series, Scale 1:50000, Geol. Surv. Japan, 80 pp, 1982 (in Japanese with English Abstract).

    Google Scholar 

  35. Ō ki, K., Changes in depositional environments during the post-glacial stage in Kagoshima Bay and Seas around the Northern Part of the Ryukyu Islands, The Quat. Res. (Daiyonki-Kienkyu), 41, 237–250, 2002 (in Japanese with English abstract).

    Article  Google Scholar 

  36. Sato, H. and H. Taniguchi, Relationship between crater size and ejecta volume of recent magmatic and phrato-magmatic eruptions: Implications for energy partitioning, Geophys. Res. Let., 24, 205–208, 1997.

    Article  Google Scholar 

  37. Self, S. and M. R. Rampino, The 1883 eruption of Krakatau, Nature, 294, 699–704, 1981.

    Article  Google Scholar 

  38. Shuto, N., C. Goto, and F. Imamura, Numerical simulation as a means of warning for near-field tsunamis, Coastal Engineering in Japan, 33, 1990.

  39. Sigurdsson, H., S. Carey, C. Mandeville, and S. Bronto, Pyroclastic flows of the 1883 Krakatau Eruption, EOS, 72, 36, 377–392, 1991.

    Article  Google Scholar 

  40. Simkin, T. and R. S. Fiske, Krakatau 1883—eruption and its effects, 464 pp, Smithsonian Institution Press, Washington D.C., 1983.

    Google Scholar 

  41. Sullivan, D. G., The discovery of Santorini Minoan tephra in western Turkey, Nature, 333, 552–554, 1988.

    Article  Google Scholar 

  42. Ui, T., Exceptionally far-reaching, thin pyroclastic flow in Southern Kyushu, Japan, Bull. Volcanol. Soc. Jap. Ser. 2, 18, 153–168, 1973 (in Japanese with English abstract).

    Google Scholar 

  43. Ui, T., H. Metsugi, K. Suzuki, G. P. L. Walker, L. A. McBroome, and M. E. Caress, Flow lineation of Koya low-aspect ratio ignimbrite, south Kyusyu, Japan, A progress report of the U.S.-Japan Cooperative Science Program, 9–12, 1984.

    Google Scholar 

  44. Verbeek, R. D. M., Krakatau, Govt. Press, Batavia, 495 pp, 1885.

    Google Scholar 

  45. Walker, G. P. L., L. A. McBroome, and M. E. Caress, Products of the Koya eruption from the Kikai caldera, Japan, A progress report of the U.S.-Japan Cooperative Science Program, 4–8, 1984.

    Google Scholar 

  46. Watts, P. and C. F. Waythomas, Theoretical analysis of tsunami generation by pryoclastic flows. J. Geophys. Res., 108, B12, 2563, doi:10.1029/2002JB002265, 2003.

    Google Scholar 

  47. Waythomas, C. F. and C. A. Neal, Tsunami generation by pyroclastic flow during the 3500-year B.P. caldera-forming eruption of Aniakchak Volcano, Alaska, Bull. Volcanol., 60, 110–124, 1998.

    Article  Google Scholar 

  48. Wilson, C. J. N. and W. Hildreth, The Bishop tuff: New insights from eruptive stratigraphy, J. Geology, 105, 407–439, 1997.

    Article  Google Scholar 

  49. Wolfe, E. W. and R. P. Hoblitt, Overview of the eruptions, in Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philipines, edited by C. G. Newhall and R. S. Punongbayan, University ofWashington Press, Seattle, pp. 3–20, 1996.

    Google Scholar 

  50. Yokoyama, I., A geophysical interpretation of the 1883 Krakatau eruption, J. Volcanol. Geotherm. Res., 9, 359–378, 1981.

    Article  Google Scholar 

  51. Yokoyama, I., A scenario of the 1883 Krakatau tsunami, J. Volcanol. Geotherm. Res., 34, 123–132, 1987.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fukashi Maeno.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maeno, F., Imamura, F. & Taniguchi, H. Numerical simulation of tsunamis generated by caldera collapse during the 7.3 ka Kikai eruption, Kyushu, Japan. Earth Planet Sp 58, 1013–1024 (2006). https://doi.org/10.1186/BF03352606

Download citation

Key words

  • Tsunami
  • caldera-forming eruption
  • caldera collapse
  • numerical simulation
  • Kikai caldera