Skip to main content

Possible TCRM acquisition of the Kilauea 1960 lava, Hawaii: failure of the Thellier paleointensity determination inferred from equilibrium temperature of the Fe−Ti oxide

Abstract

Natural rock samples may not always be the ideal material for the Thellier-type method as they occasionally result in high paleointensities. The Kilauea 1960 lava, Hawaii, is one such example. Several previous studies have suggested that one of the possible causes for this undesirable behavior is an acquisition of thermochemical remanent magnetization (TCRM) during lava formation. In order to examine this possibility quantitatively, equilibrium temperatures of titanomagnetite grains, which are associated with samples previously subjected to Thellier experiments, are estimated by a Fe−Ti oxide geothermometer. The results show that two specimens from the rock magnetic group giving relatively ideal Thellier paleointensities have clustered equilibrium temperatures of about 800–900 and 700–800°C. In contrast, two swarmed temperatures around 300 and 700°C were observed for the specimen from a group yielding high paleointensities. Although these are semi-quantitative estimates, when the time scales of Fe−Ti interdiffusion and lava cooling are taken into consideration, the last specimen could have acquired the TCRM during its formation. For such specimens, simple calculation predicts that TCRM/TRM (thermoremanent magnetization) ratios could be 1.19–1.72 for the blocking temperature range of 400–480°C, assuming a grain-growth model. The extent of this overestimation (20–70%) is comparable to the magnitude of the observations. It is therefore suggested that attention be paid to titanomagnetite grains with well-developed ilmenite lamellae, as these could be potential sources of overestimations of Thellier paleointensities of up to a few tenths of percentage points.

References

  1. Anderson, A. T., Oxidation osf the La Blanche Lake titaniferous magnetite deposit, Quebec J. Geol., 76, 528–547, 1968.

    Google Scholar 

  2. Biggin, A. J. and D. N. Thomas, Analysis of long-term variations in the geomagnetic poloidal field intensity and evaluation of their relationship with global geodynamics, Geophys. J. Int., 152, 392–415, 2003.

    Article  Google Scholar 

  3. Buddington, A. F. and D. H. Lindsley, Iron-titanium oxide minerals and synthetic equivalents, J. Petrol., 5, 310–357, 1964.

    Article  Google Scholar 

  4. Calvo, M., M. Prevot, M. Perrin, and J. Riisager, Investigating the reasons for the failure of paleointensity experiments: a study on historic lava flows from Mt. Etna (Italy), Geophys. J. Int., 149, 44–63, 2002.

    Article  Google Scholar 

  5. Carmichael, I. S. E., The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates, Contrib. Mineral. Petrol., 14, 36–64, 1967.

    Article  Google Scholar 

  6. Chauvin, A., P. Roperch, and S. Levi, Reliability of geomagnetic paleointensity data: the effects of the NRM fraction and concave-up behavior on paleointensity determinations by the Thellier method, Phys. Earth Planet. Int., 150, 265–286, 2005.

    Article  Google Scholar 

  7. Coe, R. S., Paleointensities of the Earth’s magnetic field determined from Tertiary and Quaternary rocks, J. Geophys. Res., 72, 3247–3262, 1967.

    Article  Google Scholar 

  8. Dodson, M. H. and E. McClelland, Magnetic blocking temperatures of single-domain grains during slow cooling, J. Geophys. Res., 85, 2625–2637, 1980.

    Article  Google Scholar 

  9. Dunlop, D. J. and Ö. Ö zdemir Rock Magnetism: Fundamentals and frontiers, Cambridge University Press, 573 pp, 1997.

    Google Scholar 

  10. Fox, J. M. W. and M. J. Aitkin, Cooling-rate dependence of thermoremanent magnetization, Nature, 283, 462–463, 1980.

    Article  Google Scholar 

  11. Freer, R. and Z. Hauptman, An experimental study of magnetitetitanomagnetite interdiffusion, Phys. Earth Planet. Int., 16, 223–231, 1978.

    Article  Google Scholar 

  12. Ghiorso, M. S., Thermodynamic analysis of the effect of magnetic ordering on miscibility gaps in the FeTi cubic and rhombohedral oxide minerals and the FeTi oxide geothermometer, Phys. Chem. Minerals, 25, 28–38, 1997.

    Article  Google Scholar 

  13. Ghiorso, M. S. and R. O. Sack, Fe−Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas, Contrib. Mineral Petrol., 108, 485–510, 1991.

    Article  Google Scholar 

  14. Grommé, C. S., T. L. Wright, and D. L. Peck, Magnetic properties and oxidation of iron-titanium oxide minerals in Alae and Makaopuhi lava lakes, Hawaii, J. Geophys. Res., 74, 5277–5293, 1969.

    Article  Google Scholar 

  15. Haggerty, S. E., Oxide textures—a mini-atlas, Oxide Minerals: petrologic and magnetic significance, Reviews in Mineralogy, 25, Mineralogical Society of America, 129–219, 1991.

    Google Scholar 

  16. Hill, M. J. and J. Shaw, Magnetic field intensity study of the 1960 Kilauea lava flow, Hawaii, using the microwave paleointensity technique, Geophys. J. Int., 142, 487–504, 2000.

    Article  Google Scholar 

  17. Ishikawa, Y. and S. Akimoto, Magnetic properties of the FeTiO3-Fe2O3 solid solution series, J. Phys. Soc. Jpn., 12, 1083–1098, 1957.

    Article  Google Scholar 

  18. Ishikawa, Y., N. Saito, M. Arai, Y. Watanabe, and H. Takei, A new oxide spin glass system of (1−x) FeTiO3-x Fe2O3. I. Magnetic prorerties, J. Phys. Soc. Jpn., 54, 312–325, 1985.

    Article  Google Scholar 

  19. Kellogg, K., E. E. Larson, and D. E. Watson, Thermochemical remanent magnetization and thermal remanent magnetization: comparison in a basalt, Science, 170, 628–630, 1970.

    Article  Google Scholar 

  20. Kosterov, A. A. and M. Prevót, Possible mechanisms causing failure of Thellier paleointensity experiments in some basalts, Geophys. J. Int., 134, 554–572, 1998.

    Article  Google Scholar 

  21. Lepage, L. D., ILMAT: an EXCEL worksheet for ilmenite-magnetite geothermometry and geobarometry, Comput. Geosci., 29, 673–678, 2003.

    Article  Google Scholar 

  22. Levi, S., The effect of magnetite particle size on paleointensity determinations of the geomagnetic field, Phys. Earth Planet. Int., 13, 245–259, 1977.

    Article  Google Scholar 

  23. Mankinen, E. A. and D. E. Champion, Broad trends in geomagnetic paleointensity on Hawaii during Holocene time, J. Geophys. Res., 101, 21995–22013, 1993.

    Google Scholar 

  24. McClelland, E., Theory of CRM acquired by grain growth and its implications for TRM discrimination and paleointensity determination in igneous rocks, Geophys. J. Int., 126, 271–280, 1996.

    Article  Google Scholar 

  25. Mochizuki, N., H. Tsunakawa, Y. Oishi, S. Wakai, K. Wakabayashi, and Y. Yamamoto, Palaeointensity study of the Oshima 1986 lava in Japan: implications for the reliability of the Thellier and LTD-DHT Shaw methods, Phys. Earth Planet. Int., 146, 395–416, 2004.

    Article  Google Scholar 

  26. Nagata, T., Magnetic properties of ferrimgnetic minerals of Fe−Ti-O system, in: Proc. Benedum Earth Magnetism Symp., pp. 69–86, 1962.

    Google Scholar 

  27. Oishi, Y., H. Tsunakawa, N. Mochizuki, Y. Yamamoto, K. Wakabayashi, and H. Shibuya, Validity of the LTD-DHT Shaw and Thellier palaeointensity methods: a case study of the Kilauea 1970 lava, Phys. Earth Planet. Int., 149, 243–257, 2005.

    Article  Google Scholar 

  28. Richter, D. H., J. P. Eaton, K. J. Murata, W. U. Ault, and H. L. Krivoy, Chronological narrative of the 1959–1960 eruption of Kilauea volcano, Hawaii, US Geol. Surv. Professional Paper 537-E, E1–E73, 1970.

    Google Scholar 

  29. Smirnov, A. V. and J. A. Tarduno, Thermochemical remanent magnetization in Precambrian rocks: Are we sure the geomagnetic field was weak?, J. Geophys. Res., 110, B06103, doi:10.1029/2004JB003445, 2005.

    Google Scholar 

  30. Stormer, J. C., The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron-titanium oxides, Am. Mineral., 68, 1983.

  31. Tauxe, L., Long term trends in paleointensity: The contribution of DSDP/ODP submarine basaltic glass collections, Phys. Earth Planet. Int., 2006 (in press).

    Google Scholar 

  32. Thellier, E. and O. Thellier, Sur l’intensite du champ magnetique terrestre dans le passe historique et geologique, Ann. Geophys., 15, 285–376, 1959.

    Google Scholar 

  33. Valet, J. P., Time variations in geomagnetic intensity, Rev. Geophys., 41, 1004 doi:10.1029/2001RG000104, 2003.

    Article  Google Scholar 

  34. Venezky, D. Y. and M. J. Rutherford, Petrology and Fe−Ti oxide reequilibration of the 1991 Mount Unzen mixed magma, J. Volcanol. Geotherm. Res., 89, 213–230, 1999.

    Article  Google Scholar 

  35. Verwey, E. J. W., Electronic conduction of magnetite (Fe3O4) and its transition point at low temperature, Nature, 144, 327–328, 1939.

    Article  Google Scholar 

  36. Wright, T. L., D. L. Peck, and H. R. Shaw, Kilauea lava lakes: natural laboratories for study of cooling, crystallization and differentiation of basaltic magma, in The Geophysics of the Pacific Ocean Basin and its Margin, Am. Geophys. Monogr., 19, 375–392, 1976.

    Article  Google Scholar 

  37. Xu, S. and D. J. Dunlop, Thellier paleointensity theory and experiments for multidomain grains, J. Geophys. Res., 109, B07103 doi:10.1029/2004JB003024, 2004.

    Google Scholar 

  38. Yamamoto, Y., H. Tsunakawa, and H. Shibuya, Paleointensity study of the Hawaiian 1960 lava: Implications for possible causes of erroneously high intensities, Geophys. J. Int., 153, 263–276, 2003.

    Article  Google Scholar 

  39. Yu, Y. and L. Tauxe, Testing the IZZI protocol of geomagnetic field intensity determination, Geochem. Geophys. Geosyst., 6, Q05H17, doi:10. 1029/2004GC000840, 2005.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuhji Yamamoto.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yamamoto, Y. Possible TCRM acquisition of the Kilauea 1960 lava, Hawaii: failure of the Thellier paleointensity determination inferred from equilibrium temperature of the Fe−Ti oxide. Earth Planet Sp 58, 1033–1044 (2006). https://doi.org/10.1186/BF03352608

Download citation

Key words

  • Thermochemical remanent magnetization (TCRM)
  • Thellier method
  • Hawaii
  • high temperature oxidation
  • geothermometer