Skip to main content

Possible TCRM acquisition of the Kilauea 1960 lava, Hawaii: failure of the Thellier paleointensity determination inferred from equilibrium temperature of the Fe−Ti oxide

Abstract

Natural rock samples may not always be the ideal material for the Thellier-type method as they occasionally result in high paleointensities. The Kilauea 1960 lava, Hawaii, is one such example. Several previous studies have suggested that one of the possible causes for this undesirable behavior is an acquisition of thermochemical remanent magnetization (TCRM) during lava formation. In order to examine this possibility quantitatively, equilibrium temperatures of titanomagnetite grains, which are associated with samples previously subjected to Thellier experiments, are estimated by a Fe−Ti oxide geothermometer. The results show that two specimens from the rock magnetic group giving relatively ideal Thellier paleointensities have clustered equilibrium temperatures of about 800–900 and 700–800°C. In contrast, two swarmed temperatures around 300 and 700°C were observed for the specimen from a group yielding high paleointensities. Although these are semi-quantitative estimates, when the time scales of Fe−Ti interdiffusion and lava cooling are taken into consideration, the last specimen could have acquired the TCRM during its formation. For such specimens, simple calculation predicts that TCRM/TRM (thermoremanent magnetization) ratios could be 1.19–1.72 for the blocking temperature range of 400–480°C, assuming a grain-growth model. The extent of this overestimation (20–70%) is comparable to the magnitude of the observations. It is therefore suggested that attention be paid to titanomagnetite grains with well-developed ilmenite lamellae, as these could be potential sources of overestimations of Thellier paleointensities of up to a few tenths of percentage points.

References

  • Anderson, A. T., Oxidation osf the La Blanche Lake titaniferous magnetite deposit, Quebec J. Geol., 76, 528–547, 1968.

    Google Scholar 

  • Biggin, A. J. and D. N. Thomas, Analysis of long-term variations in the geomagnetic poloidal field intensity and evaluation of their relationship with global geodynamics, Geophys. J. Int., 152, 392–415, 2003.

    Article  Google Scholar 

  • Buddington, A. F. and D. H. Lindsley, Iron-titanium oxide minerals and synthetic equivalents, J. Petrol., 5, 310–357, 1964.

    Article  Google Scholar 

  • Calvo, M., M. Prevot, M. Perrin, and J. Riisager, Investigating the reasons for the failure of paleointensity experiments: a study on historic lava flows from Mt. Etna (Italy), Geophys. J. Int., 149, 44–63, 2002.

    Article  Google Scholar 

  • Carmichael, I. S. E., The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates, Contrib. Mineral. Petrol., 14, 36–64, 1967.

    Article  Google Scholar 

  • Chauvin, A., P. Roperch, and S. Levi, Reliability of geomagnetic paleointensity data: the effects of the NRM fraction and concave-up behavior on paleointensity determinations by the Thellier method, Phys. Earth Planet. Int., 150, 265–286, 2005.

    Article  Google Scholar 

  • Coe, R. S., Paleointensities of the Earth’s magnetic field determined from Tertiary and Quaternary rocks, J. Geophys. Res., 72, 3247–3262, 1967.

    Article  Google Scholar 

  • Dodson, M. H. and E. McClelland, Magnetic blocking temperatures of single-domain grains during slow cooling, J. Geophys. Res., 85, 2625–2637, 1980.

    Article  Google Scholar 

  • Dunlop, D. J. and Ö. Ö zdemir Rock Magnetism: Fundamentals and frontiers, Cambridge University Press, 573 pp, 1997.

    Book  Google Scholar 

  • Fox, J. M. W. and M. J. Aitkin, Cooling-rate dependence of thermoremanent magnetization, Nature, 283, 462–463, 1980.

    Article  Google Scholar 

  • Freer, R. and Z. Hauptman, An experimental study of magnetitetitanomagnetite interdiffusion, Phys. Earth Planet. Int., 16, 223–231, 1978.

    Article  Google Scholar 

  • Ghiorso, M. S., Thermodynamic analysis of the effect of magnetic ordering on miscibility gaps in the FeTi cubic and rhombohedral oxide minerals and the FeTi oxide geothermometer, Phys. Chem. Minerals, 25, 28–38, 1997.

    Article  Google Scholar 

  • Ghiorso, M. S. and R. O. Sack, Fe−Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas, Contrib. Mineral Petrol., 108, 485–510, 1991.

    Article  Google Scholar 

  • Grommé, C. S., T. L. Wright, and D. L. Peck, Magnetic properties and oxidation of iron-titanium oxide minerals in Alae and Makaopuhi lava lakes, Hawaii, J. Geophys. Res., 74, 5277–5293, 1969.

    Article  Google Scholar 

  • Haggerty, S. E., Oxide textures—a mini-atlas, Oxide Minerals: petrologic and magnetic significance, Reviews in Mineralogy, 25, Mineralogical Society of America, 129–219, 1991.

    Google Scholar 

  • Hill, M. J. and J. Shaw, Magnetic field intensity study of the 1960 Kilauea lava flow, Hawaii, using the microwave paleointensity technique, Geophys. J. Int., 142, 487–504, 2000.

    Article  Google Scholar 

  • Ishikawa, Y. and S. Akimoto, Magnetic properties of the FeTiO3-Fe2O3 solid solution series, J. Phys. Soc. Jpn., 12, 1083–1098, 1957.

    Article  Google Scholar 

  • Ishikawa, Y., N. Saito, M. Arai, Y. Watanabe, and H. Takei, A new oxide spin glass system of (1−x) FeTiO3-x Fe2O3. I. Magnetic prorerties, J. Phys. Soc. Jpn., 54, 312–325, 1985.

    Article  Google Scholar 

  • Kellogg, K., E. E. Larson, and D. E. Watson, Thermochemical remanent magnetization and thermal remanent magnetization: comparison in a basalt, Science, 170, 628–630, 1970.

    Article  Google Scholar 

  • Kosterov, A. A. and M. Prevót, Possible mechanisms causing failure of Thellier paleointensity experiments in some basalts, Geophys. J. Int., 134, 554–572, 1998.

    Article  Google Scholar 

  • Lepage, L. D., ILMAT: an EXCEL worksheet for ilmenite-magnetite geothermometry and geobarometry, Comput. Geosci., 29, 673–678, 2003.

    Article  Google Scholar 

  • Levi, S., The effect of magnetite particle size on paleointensity determinations of the geomagnetic field, Phys. Earth Planet. Int., 13, 245–259, 1977.

    Article  Google Scholar 

  • Mankinen, E. A. and D. E. Champion, Broad trends in geomagnetic paleointensity on Hawaii during Holocene time, J. Geophys. Res., 101, 21995–22013, 1993.

    Google Scholar 

  • McClelland, E., Theory of CRM acquired by grain growth and its implications for TRM discrimination and paleointensity determination in igneous rocks, Geophys. J. Int., 126, 271–280, 1996.

    Article  Google Scholar 

  • Mochizuki, N., H. Tsunakawa, Y. Oishi, S. Wakai, K. Wakabayashi, and Y. Yamamoto, Palaeointensity study of the Oshima 1986 lava in Japan: implications for the reliability of the Thellier and LTD-DHT Shaw methods, Phys. Earth Planet. Int., 146, 395–416, 2004.

    Article  Google Scholar 

  • Nagata, T., Magnetic properties of ferrimgnetic minerals of Fe−Ti-O system, in: Proc. Benedum Earth Magnetism Symp., pp. 69–86, 1962.

    Google Scholar 

  • Oishi, Y., H. Tsunakawa, N. Mochizuki, Y. Yamamoto, K. Wakabayashi, and H. Shibuya, Validity of the LTD-DHT Shaw and Thellier palaeointensity methods: a case study of the Kilauea 1970 lava, Phys. Earth Planet. Int., 149, 243–257, 2005.

    Article  Google Scholar 

  • Richter, D. H., J. P. Eaton, K. J. Murata, W. U. Ault, and H. L. Krivoy, Chronological narrative of the 1959–1960 eruption of Kilauea volcano, Hawaii, US Geol. Surv. Professional Paper 537-E, E1–E73, 1970.

    Google Scholar 

  • Smirnov, A. V. and J. A. Tarduno, Thermochemical remanent magnetization in Precambrian rocks: Are we sure the geomagnetic field was weak?, J. Geophys. Res., 110, B06103, doi:10.1029/2004JB003445, 2005.

    Google Scholar 

  • Stormer, J. C., The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron-titanium oxides, Am. Mineral., 68, 1983.

  • Tauxe, L., Long term trends in paleointensity: The contribution of DSDP/ODP submarine basaltic glass collections, Phys. Earth Planet. Int., 2006 (in press).

    Google Scholar 

  • Thellier, E. and O. Thellier, Sur l’intensite du champ magnetique terrestre dans le passe historique et geologique, Ann. Geophys., 15, 285–376, 1959.

    Google Scholar 

  • Valet, J. P., Time variations in geomagnetic intensity, Rev. Geophys., 41, 1004 doi:10.1029/2001RG000104, 2003.

    Article  Google Scholar 

  • Venezky, D. Y. and M. J. Rutherford, Petrology and Fe−Ti oxide reequilibration of the 1991 Mount Unzen mixed magma, J. Volcanol. Geotherm. Res., 89, 213–230, 1999.

    Article  Google Scholar 

  • Verwey, E. J. W., Electronic conduction of magnetite (Fe3O4) and its transition point at low temperature, Nature, 144, 327–328, 1939.

    Article  Google Scholar 

  • Wright, T. L., D. L. Peck, and H. R. Shaw, Kilauea lava lakes: natural laboratories for study of cooling, crystallization and differentiation of basaltic magma, in The Geophysics of the Pacific Ocean Basin and its Margin, Am. Geophys. Monogr., 19, 375–392, 1976.

    Article  Google Scholar 

  • Xu, S. and D. J. Dunlop, Thellier paleointensity theory and experiments for multidomain grains, J. Geophys. Res., 109, B07103 doi:10.1029/2004JB003024, 2004.

    Google Scholar 

  • Yamamoto, Y., H. Tsunakawa, and H. Shibuya, Paleointensity study of the Hawaiian 1960 lava: Implications for possible causes of erroneously high intensities, Geophys. J. Int., 153, 263–276, 2003.

    Article  Google Scholar 

  • Yu, Y. and L. Tauxe, Testing the IZZI protocol of geomagnetic field intensity determination, Geochem. Geophys. Geosyst., 6, Q05H17, doi:10. 1029/2004GC000840, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhji Yamamoto.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Yamamoto, Y. Possible TCRM acquisition of the Kilauea 1960 lava, Hawaii: failure of the Thellier paleointensity determination inferred from equilibrium temperature of the Fe−Ti oxide. Earth Planet Sp 58, 1033–1044 (2006). https://doi.org/10.1186/BF03352608

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352608

Key words