Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Possible TCRM acquisition of the Kilauea 1960 lava, Hawaii: failure of the Thellier paleointensity determination inferred from equilibrium temperature of the Fe−Ti oxide


Natural rock samples may not always be the ideal material for the Thellier-type method as they occasionally result in high paleointensities. The Kilauea 1960 lava, Hawaii, is one such example. Several previous studies have suggested that one of the possible causes for this undesirable behavior is an acquisition of thermochemical remanent magnetization (TCRM) during lava formation. In order to examine this possibility quantitatively, equilibrium temperatures of titanomagnetite grains, which are associated with samples previously subjected to Thellier experiments, are estimated by a Fe−Ti oxide geothermometer. The results show that two specimens from the rock magnetic group giving relatively ideal Thellier paleointensities have clustered equilibrium temperatures of about 800–900 and 700–800°C. In contrast, two swarmed temperatures around 300 and 700°C were observed for the specimen from a group yielding high paleointensities. Although these are semi-quantitative estimates, when the time scales of Fe−Ti interdiffusion and lava cooling are taken into consideration, the last specimen could have acquired the TCRM during its formation. For such specimens, simple calculation predicts that TCRM/TRM (thermoremanent magnetization) ratios could be 1.19–1.72 for the blocking temperature range of 400–480°C, assuming a grain-growth model. The extent of this overestimation (20–70%) is comparable to the magnitude of the observations. It is therefore suggested that attention be paid to titanomagnetite grains with well-developed ilmenite lamellae, as these could be potential sources of overestimations of Thellier paleointensities of up to a few tenths of percentage points.


  1. Anderson, A. T., Oxidation osf the La Blanche Lake titaniferous magnetite deposit, Quebec J. Geol., 76, 528–547, 1968.

  2. Biggin, A. J. and D. N. Thomas, Analysis of long-term variations in the geomagnetic poloidal field intensity and evaluation of their relationship with global geodynamics, Geophys. J. Int., 152, 392–415, 2003.

  3. Buddington, A. F. and D. H. Lindsley, Iron-titanium oxide minerals and synthetic equivalents, J. Petrol., 5, 310–357, 1964.

  4. Calvo, M., M. Prevot, M. Perrin, and J. Riisager, Investigating the reasons for the failure of paleointensity experiments: a study on historic lava flows from Mt. Etna (Italy), Geophys. J. Int., 149, 44–63, 2002.

  5. Carmichael, I. S. E., The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates, Contrib. Mineral. Petrol., 14, 36–64, 1967.

  6. Chauvin, A., P. Roperch, and S. Levi, Reliability of geomagnetic paleointensity data: the effects of the NRM fraction and concave-up behavior on paleointensity determinations by the Thellier method, Phys. Earth Planet. Int., 150, 265–286, 2005.

  7. Coe, R. S., Paleointensities of the Earth’s magnetic field determined from Tertiary and Quaternary rocks, J. Geophys. Res., 72, 3247–3262, 1967.

  8. Dodson, M. H. and E. McClelland, Magnetic blocking temperatures of single-domain grains during slow cooling, J. Geophys. Res., 85, 2625–2637, 1980.

  9. Dunlop, D. J. and Ö. Ö zdemir Rock Magnetism: Fundamentals and frontiers, Cambridge University Press, 573 pp, 1997.

  10. Fox, J. M. W. and M. J. Aitkin, Cooling-rate dependence of thermoremanent magnetization, Nature, 283, 462–463, 1980.

  11. Freer, R. and Z. Hauptman, An experimental study of magnetitetitanomagnetite interdiffusion, Phys. Earth Planet. Int., 16, 223–231, 1978.

  12. Ghiorso, M. S., Thermodynamic analysis of the effect of magnetic ordering on miscibility gaps in the FeTi cubic and rhombohedral oxide minerals and the FeTi oxide geothermometer, Phys. Chem. Minerals, 25, 28–38, 1997.

  13. Ghiorso, M. S. and R. O. Sack, Fe−Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas, Contrib. Mineral Petrol., 108, 485–510, 1991.

  14. Grommé, C. S., T. L. Wright, and D. L. Peck, Magnetic properties and oxidation of iron-titanium oxide minerals in Alae and Makaopuhi lava lakes, Hawaii, J. Geophys. Res., 74, 5277–5293, 1969.

  15. Haggerty, S. E., Oxide textures—a mini-atlas, Oxide Minerals: petrologic and magnetic significance, Reviews in Mineralogy, 25, Mineralogical Society of America, 129–219, 1991.

  16. Hill, M. J. and J. Shaw, Magnetic field intensity study of the 1960 Kilauea lava flow, Hawaii, using the microwave paleointensity technique, Geophys. J. Int., 142, 487–504, 2000.

  17. Ishikawa, Y. and S. Akimoto, Magnetic properties of the FeTiO3-Fe2O3 solid solution series, J. Phys. Soc. Jpn., 12, 1083–1098, 1957.

  18. Ishikawa, Y., N. Saito, M. Arai, Y. Watanabe, and H. Takei, A new oxide spin glass system of (1−x) FeTiO3-x Fe2O3. I. Magnetic prorerties, J. Phys. Soc. Jpn., 54, 312–325, 1985.

  19. Kellogg, K., E. E. Larson, and D. E. Watson, Thermochemical remanent magnetization and thermal remanent magnetization: comparison in a basalt, Science, 170, 628–630, 1970.

  20. Kosterov, A. A. and M. Prevót, Possible mechanisms causing failure of Thellier paleointensity experiments in some basalts, Geophys. J. Int., 134, 554–572, 1998.

  21. Lepage, L. D., ILMAT: an EXCEL worksheet for ilmenite-magnetite geothermometry and geobarometry, Comput. Geosci., 29, 673–678, 2003.

  22. Levi, S., The effect of magnetite particle size on paleointensity determinations of the geomagnetic field, Phys. Earth Planet. Int., 13, 245–259, 1977.

  23. Mankinen, E. A. and D. E. Champion, Broad trends in geomagnetic paleointensity on Hawaii during Holocene time, J. Geophys. Res., 101, 21995–22013, 1993.

  24. McClelland, E., Theory of CRM acquired by grain growth and its implications for TRM discrimination and paleointensity determination in igneous rocks, Geophys. J. Int., 126, 271–280, 1996.

  25. Mochizuki, N., H. Tsunakawa, Y. Oishi, S. Wakai, K. Wakabayashi, and Y. Yamamoto, Palaeointensity study of the Oshima 1986 lava in Japan: implications for the reliability of the Thellier and LTD-DHT Shaw methods, Phys. Earth Planet. Int., 146, 395–416, 2004.

  26. Nagata, T., Magnetic properties of ferrimgnetic minerals of Fe−Ti-O system, in: Proc. Benedum Earth Magnetism Symp., pp. 69–86, 1962.

  27. Oishi, Y., H. Tsunakawa, N. Mochizuki, Y. Yamamoto, K. Wakabayashi, and H. Shibuya, Validity of the LTD-DHT Shaw and Thellier palaeointensity methods: a case study of the Kilauea 1970 lava, Phys. Earth Planet. Int., 149, 243–257, 2005.

  28. Richter, D. H., J. P. Eaton, K. J. Murata, W. U. Ault, and H. L. Krivoy, Chronological narrative of the 1959–1960 eruption of Kilauea volcano, Hawaii, US Geol. Surv. Professional Paper 537-E, E1–E73, 1970.

  29. Smirnov, A. V. and J. A. Tarduno, Thermochemical remanent magnetization in Precambrian rocks: Are we sure the geomagnetic field was weak?, J. Geophys. Res., 110, B06103, doi:10.1029/2004JB003445, 2005.

  30. Stormer, J. C., The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron-titanium oxides, Am. Mineral., 68, 1983.

  31. Tauxe, L., Long term trends in paleointensity: The contribution of DSDP/ODP submarine basaltic glass collections, Phys. Earth Planet. Int., 2006 (in press).

  32. Thellier, E. and O. Thellier, Sur l’intensite du champ magnetique terrestre dans le passe historique et geologique, Ann. Geophys., 15, 285–376, 1959.

  33. Valet, J. P., Time variations in geomagnetic intensity, Rev. Geophys., 41, 1004 doi:10.1029/2001RG000104, 2003.

  34. Venezky, D. Y. and M. J. Rutherford, Petrology and Fe−Ti oxide reequilibration of the 1991 Mount Unzen mixed magma, J. Volcanol. Geotherm. Res., 89, 213–230, 1999.

  35. Verwey, E. J. W., Electronic conduction of magnetite (Fe3O4) and its transition point at low temperature, Nature, 144, 327–328, 1939.

  36. Wright, T. L., D. L. Peck, and H. R. Shaw, Kilauea lava lakes: natural laboratories for study of cooling, crystallization and differentiation of basaltic magma, in The Geophysics of the Pacific Ocean Basin and its Margin, Am. Geophys. Monogr., 19, 375–392, 1976.

  37. Xu, S. and D. J. Dunlop, Thellier paleointensity theory and experiments for multidomain grains, J. Geophys. Res., 109, B07103 doi:10.1029/2004JB003024, 2004.

  38. Yamamoto, Y., H. Tsunakawa, and H. Shibuya, Paleointensity study of the Hawaiian 1960 lava: Implications for possible causes of erroneously high intensities, Geophys. J. Int., 153, 263–276, 2003.

  39. Yu, Y. and L. Tauxe, Testing the IZZI protocol of geomagnetic field intensity determination, Geochem. Geophys. Geosyst., 6, Q05H17, doi:10. 1029/2004GC000840, 2005.

Download references

Author information



Corresponding author

Correspondence to Yuhji Yamamoto.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yamamoto, Y. Possible TCRM acquisition of the Kilauea 1960 lava, Hawaii: failure of the Thellier paleointensity determination inferred from equilibrium temperature of the Fe−Ti oxide. Earth Planet Sp 58, 1033–1044 (2006).

Download citation

Key words

  • Thermochemical remanent magnetization (TCRM)
  • Thellier method
  • Hawaii
  • high temperature oxidation
  • geothermometer