Skip to main content

Two electrical conductors beneath Kusatsu-Shirane volcano, Japan, imaged by audiomagnetotellurics, and their implications for the hydrothermal system

Abstract

Kusatsu-Shirane volcano, Japan, is known for its active phreatic eruptions. We have investigated its hydrothermal system by conducting audio-magnetotelluric soundings at 22 stations along a profile that extends across the volcano. The final two-dimensional model is characterized by two conductors. One is a 300- to 1000-m-thick conductor of 1–10 Ωm, which is located on the eastern slope and covered with 200-m-thick resistive layers of Kusatsu-Shirane lava and pyroclastics. This conductor indicates the presence of a Montmorillonite-rich layer of Pliocene volcanic rocks that may function both as an impermeable floor for the shallow fluid path from the peak to the hot springs to the east and as an impermeable cap for the deeper fluid path from the summit region to the foot of the volcano. The second conductor is found at a depth of 1–2 km from the surface, at the peak of the volcano, and its resistivity is as low as 1 Ωm or less. This low resistivity can be explained by fluids containing high concentrations of chloride and sulfate which were supplied from the magmatic gases. Micro-earthquakes cluster above this conductor, and the cut-off of the earthquakes corresponds to the top of the conductor. This conductor infers the presence of the fluid reservoir, and the upward release of these fluids from the reservoir through the conduit presumably triggers the micro-earthquakes at the peak area of the volcano. Crustal deformation modeling using GPS and leveling data of the past 10 years revealed that the center of the deflation coincides with the top of the second conductor, indicating that the fluid reservoir itself can be hosting the deformation.

References

  1. Aizawa, K., R. Yoshimura, N. Oshiman, K. Yamazaki, T. Uto, Y. Ogawa, S. B. Tank, W. Kanda, S. Sakanaka, Y. Furukawa, T. Hashimoto, M. Uyeshima, T. Ogawa, I. Shiozaki, and A. Hurst, Hydrothermal System beneath Mt. Fuji volcano inferred from magnetotellurics and electric self-potential, Earth Planet. Sci. Lett., 235, 343–355, 2005.

    Article  Google Scholar 

  2. Çağlar, İ. and T. İşseven, Two-dimensional geoelectrical structure of the Göynük geothermal area, northwest Anatolia, Turkey, J. Volcanol. Geotherm. Res., 134, 183–197, 2004.

    Article  Google Scholar 

  3. Di Maio, R., P. Mauriello, D. Patella, Z. Petrillo, S. Piscitelli, and A. Siniscalchi, Electric and electromagnetic outline of the Mount Somma-Vesuvius structural setting, J. Volcanol. Geotherm. Res., 82, 219–238, 1998.

    Article  Google Scholar 

  4. Fujita, K., Y. Ogawa, M. Ichiki, S. Yamaguchi, and Y. Makino, Audio frequency magneto-telluric survey of Norikura Volcano in central Japan, J. Volcanol. Geotherm. Res., 90, 209–217, 1999.

    Article  Google Scholar 

  5. Geological Survey of Japan, Geological map of Japan, 1:200, 000, Nagano, 1998.

    Google Scholar 

  6. Geological Survey of Japan (ed.), Gravity CD-ROM of Japan, Ver. 2, Digital Geoscience Map P-2, Geological Survey of Japan, 2004.

    Google Scholar 

  7. Groom, R. W. and R. C. Bailey, Decomposition of magnetotelluric impedance tensor in the presence of local three-dimensional galvanic distortion, J. Geophys. Res., 94, 1913–1925, 1989.

    Article  Google Scholar 

  8. Gunma Prefecture, Report on the geothermal survey around Kusatsu-Shirane volcano, 374 pp, 1989 (in Japanese).

    Google Scholar 

  9. Harvey, C. and P. Browne, Mixed-layer clays in geothermal systems and their effectiveness as mineral geothermometers, Proceedings World Geothermal Congress 2000, Kyushu-Tohoku, Japan, May 28–June 10, 1201–1204, 2000.

    Google Scholar 

  10. Hirabayashi, J., Formation of volcanic fluid reservoir and volcanic activity, J. Balneol. Soc. Jpn., 49, 99–105, 1999 (in Japanese with English abstract).

    Google Scholar 

  11. Hirabayashi, J., T. Ohba, and K. Nogami, Hydrothermal system of Kusatsu-Shirane volcano and Kirishima volcanic area inferred from geochemical observations, 53–62, in Magma prospecting present and future perspective, Proc. Disas. Prev. Res. Inst. Symp. (8K-6), Kyoto University, 1997 (in Japanese with English abstract).

    Google Scholar 

  12. Hiroshima, T., M. Komazawa, and T. Nakatsuka, Gravity map of Joshin-Etsu District (Bouguer anomalies), Gravity Map Series, no. 5, Geological Survey of Japan, 1994.

    Google Scholar 

  13. Kagiyama, T., H. Utada, and T. Yamamoto, Magma ascent beneath Unzen Volcano, SW Japan, deduced from the electrical resistivity structure, J. Volcanol. Geotherm. Res., 89, 35–42, 1999.

    Article  Google Scholar 

  14. Kasaya, T., N. Oshiman, N. Sumitomo, M. Uyeshima, Y. Iio, and D. Uehara, Resistivity structure around the hypocentral area of the 1984 Western Nagano Prefecture earthquake in central Japan, Earth Planets Space, 54, 107–118, 2002.

    Article  Google Scholar 

  15. Kikawada, Y., T. Oi, T. Honda, T. Ossaka, and H. Kakihara, Lanthanoid abundances of acidic hot spring and crater lake waters in the Kusatsu-Shirane volcano region, Japan, Geochem. J., 27, 19–33, 1993.

    Article  Google Scholar 

  16. Kumagai, H., B. A. Chouet, and M. Nakano, Temporal evolution of a hydrothermal system in Kusatsu-Shirane Volcano, Japan, inferred from the complex frequencies of long-period events, J. Geophys. Res., 107(B10), 2236, doi:10.1029/2001JB000653, 2002.

    Article  Google Scholar 

  17. Kurasawa, T., Problem with the drilling of geothermal well in the south of Mt. Kusatsu-Shirane, Gunma Prf., J. Japan Geothermal Energy Assoc, 30, 1–23, 1993 (in Japanese with English abstract).

    Google Scholar 

  18. Makino, M., S. Watanabe, T. Sumita, and Y. Ogawa, Microgravity Survey in the vicinity of the Kusatsu-Shirane Summit, report on the 4th joint observation of Kusatsu-Shirane volcano, 69–80, 2004 (in Japanese).

    Google Scholar 

  19. Manzella, A., G. Volpi, A. Zaja, and M. Meju, Combined TEM-MT investigation of shallow-depth resistivity structure of Mt Somma-Vesuvius, J. Volcanol. Geotherm. Res., 131, 19–32, 2004.

    Article  Google Scholar 

  20. Matsushima, N., H. Oshima, Y. Ogawa, S. Takakura, H. Satoh, M. Utsugi, and Y. Nishida, Magma prospecting in Usu volcano, Hokkaido, Japan, using magnetotelluric soundings, J. Volcanol. Geotherm. Res., 109(4), 263–277, 2001.

    Article  Google Scholar 

  21. Mizuhashi, S., Geothermal system of Kusatsu-Shirane volcano inferred from the volatile mass flux, Master thesis, Tokyo Institute of Technology, 69 pp., 2004 (in Japanese).

    Google Scholar 

  22. Mori, T., J. Hirabayashi, K. Nogami, and S. Onizawa, A new seismic observation system at the Kusatsu-Shirane volcano, Bull. Volcanol. Soc. Japan, Ser. 2, 51, 41–47, 2006 (in Japanese with English abstract).

    Google Scholar 

  23. Müller, A. and V. Haak, 3-D modeling of the deep electrical conductivity of Merapi volcano (Central Java): integrating magnetotellurics, induction vectors and the effects of steep topography, J. Volcanol. Geotherm. Res., 138(3–4), 205–222, 2004.

    Article  Google Scholar 

  24. Murakami, M., A. Kagawa, A. Yamada, H. Satoh, M. Yokokawa, T. Kimura, T. Kawamoto, K. Mori, and A. Suzuki, A deflation source beneath Kusatsu-Shirane volcano inferred from repeated campaign measurements of GPS and precise leveling, 4th Joint Observation of Kusatsu-Shirane Volcano, 31–36, 2004 (in Japanese).

    Google Scholar 

  25. Nakano, M., H. Kumagai, and B. A. Chouet, Source mechanism of long-period events at Kusatsu-Shirane Volcano, Japan, inferred from waveform inversion of the effective excitation functions, J. Volcanol. Geotherm. Res., 122, 149–164, 2003.

    Article  Google Scholar 

  26. Ogawa, Y., On two-dimensional modeling of magnetotelluric field data, Surv. Geophys., 23(2–3), 251–273, 2002.

    Article  Google Scholar 

  27. Ogawa, Y. and Y. Honkura, Mid-crustal electrical conductors and their correlations to seismicity and deformation at Itoigawa-Shizuoka Tectonic Line, Central Japan, Earth Planets Space, 56, 1285–1291, 2004.

    Article  Google Scholar 

  28. Ogawa, Y. and S. Takakura, CSAMT measurement across the 1986 C Craters of Izu-Oshima Island, Japan, J. Geomag. Geoelectr., 42, 211–224, 1990.

    Article  Google Scholar 

  29. Ogawa, Y. and T. Uchida, A two-dimensional magnetotelluric inversion assuming Gaussian static shift, Geophys. J. Int., 126, 69–76, 1996.

    Article  Google Scholar 

  30. Ogawa, Y., S. Takakura, and T. Soya, Wideband magnetotelluric measurements across Izu-Oshima volcano, J. Geomag. Geoelectr., 44, 561–566, 1992.

    Article  Google Scholar 

  31. Ogawa, Y., N. Matsushima, H. Oshima, S. Takakura, M. Utsugi, K. Hirano, M. Igarashi, and T. Doi, A resistivity cross-section of Usu volcano, Hokkaido, Japan, by audiomagnetotellurics soundings, Earth Planets Space, 50, 339–346, 1998.

    Article  Google Scholar 

  32. Ogawa, Y., H. M. Bibby, T. G. Caldwell, S. Takakura, T. Uchida, N. Matsushima, S. L. Bennie, T. Tosha, and Y. Nishi, Wide-band magnetotelluric measurements across the Taupo Volcanic Zone, New Zealand—preliminary results, Geophys. Res. Lett., 26, 3673–3676, 1999.

    Article  Google Scholar 

  33. Ogawa, Y., M. Mishina, T. Goto, H. Satoh, N. Oshiman, T. Kasaya, Y. Takahashi, T. Nisitani, S. Sakanaka, M. Uyeshima, Y. Takahashi, Y. Honkura, and M. Matsushima, Magnetotelluric imaging of fluid in the interpolate earthquake zone, NE Japan back arc, Geophys. Res. Lett., 28, 3741–3744, 2001.

    Article  Google Scholar 

  34. Ogawa, Y., S. Takakura, and Y. Honkura, Resistivity structure across Itoigawa-Shizuoka tectonic line and its implications for concentrated deformation, Earth Planets Space, 54, 1115–1120, 2002.

    Article  Google Scholar 

  35. Ohba, T., Geothermal system of Kusatsu-Shirane volcano, in Volcanic Structure in the Shallow Part and Volcanic Fluid, Proc. Disas. Prev. Res. Inst. Symp.(12K-3), Kyoto Univ., 161–168, 2002 (in Japanese).

    Google Scholar 

  36. Ohba, T., J. Hirabayashi, and K. Nogami, Water, heat and chloride budgets of the crater lake, Yugama, at Kusatsu-Shirane volcano, Geochem. J., 28, 217–231, 1994.

    Article  Google Scholar 

  37. Ohba, T., J. Hirabayashi, and K. Nogami, D/H and 18O/16O ratios of water in the crater lake at Kusatsu-Shirane volcano, Japan, J. Volcanol. Geotherm. Res., 97, 329–346, 2000.

    Article  Google Scholar 

  38. Ohwada, M., T. Ohba, J. Hirabayashi, K. Nogami, K. Nakamura, and K. Nagao, Interaction between magmatic fluid and meteoric water, inferred from 18O/16O and 36Ar/H2O ratios of fumarolic gases at the Kusatsu-Shirane volcano, Japan, Earth Planets Space, 55, 105–110, 2003.

    Article  Google Scholar 

  39. Oskooi, B., L. B. Pedersen, M. Smirnov, K. Arnason, H. Eysteinsson, A. Manzella, and the DGP Working Group, The deep geothermal structure of the Mid-Atlantic Ridge deduced from MT data in SW Iceland, Phys. Earth Planet. Inter., 150, 183–195, 2005.

    Article  Google Scholar 

  40. Ossaka, J. and J. Hirabayashi, Clay minerals in volcanic ejecta, J. Mine. Soc. Jpn., 15, 223–228, 1981 (in Japanese with English abstract).

    Google Scholar 

  41. Pellerin, L., J. M. Johnston, and G. W. Hohmann, A numerical evaluation of electromagnetic methods in geothermal exploration, Geophysics, 61, 121–130, 1996.

    Article  Google Scholar 

  42. Sano, Y., J. Hirabayashi, T. Oba, and T. Gamo, Carbon and helium isotopic ratios at Kusatsu-Shirane Volcano, Japan, Appl. Geochem., 9, 371–377, 1994.

    Article  Google Scholar 

  43. Takeda, T., H. Sato, T. Iwasaki, N. Matsuta, S. Sakai, T. Iidaka, and A. Kato, Crustal structure in the northern Fossa Magna region, central Japan, modeled from refraction/wide-angle reflection data, Earth Planets Space, 56, 1293–1299, 2004.

    Article  Google Scholar 

  44. Todaka, N., C. Akasaka, T. Xu, and K. Pruess, Reactive Geothermal Transport Simulation to Study the Formation Mechanism of Impermeable Barrier between Acidic and Neutral Fluid Zones in the Onikobe Geothermal Field, Japan, LBNL-52493, Lawrence Berkeley National Laboratory, University of California, Berkeley, 37 pp, 2003.

    Google Scholar 

  45. Uchida, T., Reservoir structure of the Sengan geothermal field interpreted from the resistivity data, J. Geotherm. Res. Soc. Japan, 12, 1–21, 1990 (in Japanese with English abstract).

    Google Scholar 

  46. Ucok, H., I. Ershaghi, and G. Olhoeft, Electrical resistivity of geothermal brines, J. Petrol. Technol., 32(4), 717–727, 1980.

    Article  Google Scholar 

  47. Uto, K., Y. Hayakawa, S. Aramaki, and J. Ossaka, Geological map of Kusatsu-Shirane volcano, Geological Survey of Japan, 1983 (in Japanese)

    Google Scholar 

  48. Yamazaki, A., M. Churei, S. Tsunomura, and S. Nakajima, Analysis of the variation of geomagnetic total force at Kusatsu-Shirane volcano: the remarkable changes in the geomagnetic total force in 1990 and the estimated thermal demagnetization model, Mem. Kakioka Mag. Obs., 24(2), 53–66, 1992 (in Japanese with English abstract).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yasuo Ogawa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nurhasan, Ogawa, Y., Ujihara, N. et al. Two electrical conductors beneath Kusatsu-Shirane volcano, Japan, imaged by audiomagnetotellurics, and their implications for the hydrothermal system. Earth Planet Sp 58, 1053–1059 (2006). https://doi.org/10.1186/BF03352610

Download citation

Key words

  • Resistivity
  • volcano
  • magnetotellurics
  • Montmorillonite
  • clay
  • fluid