Skip to main content

Conductivity, electric field and electron drift velocity within the equatorial electrojet

Abstract

Rocket-borne in-situ measurements of electron density and current density made from Thumba, India, on four occasions between 1966 and 1973 and on one flight from Peru in 1965 are studied along with the corresponding ground magnetometer data. The Cowling conductivity is computed using the yearly mean magnetic field values of 1965 and the atmospheric density values from the MSIS 1986 model. The rocket-borne measurements from Thumba cover different geophysical conditions of strong, moderate and partial counter-electrojet events. The vertical profiles of the measured current density and electron density are presented along with the computed Cowling conductivity, electron drift velocity and electric field. The peak current density occurred at 106–107 km over Thumba and at 109 km over Peru compared to 104 km over Brazil. Cowling conductivity peaks occurred at 102 km over Huancayo and 101 km over Thumba, while electron drift velocity and electric field peaks occurred at approximately 105–107 km over Thumba, 108 and 110 km over Huancayo and 104 km over Brazil, respectively. While the electron density near the level of peak current density shows some variability, electron drift velocity and electric field show large variability. We conclude that the local electric field plays an important role in the spatial and temporal variability of the strength of the electrojet.

References

  1. Baker, N. G. and D. F. Martyn, Electric currents in the ionosphere; The conductivity, Philos. Trans. Roy. Soc. Lond., A246, 281–294, 1953.

    Article  Google Scholar 

  2. Carter, D. A., B. B. Balsley, and W. L. Eckerland, VHF Dopler radar observations of the African Equatorial Electrojet, J. Geophys. Res., 81, 2786–2794, 1976.

    Article  Google Scholar 

  3. Chandra, H., R. K. Misra, and R. G. Rastogi, Equatorial ionospheric drift and electrojet, Planet. Space Sci., 19, 1497–1503, 1971.

    Article  Google Scholar 

  4. Chandra, H., H. S. S. Sinha, and R. G. Rastogi, Equatorial electrojet studies from rocket and ground measurements, Earth Planets Space, 52, 111–120, 2000.

    Article  Google Scholar 

  5. Chapman, S., The equatorial electrojet as detected from the abnormal electric current distributions above Huancayo, Arch. Meteoral. Geophys. Bioclimatal, A4, 368–390, 1951.

    Article  Google Scholar 

  6. Cowling, T. G. and R. Borger, Electrical conductivity in the ionosphere, Nature (Lond), 162, 143, 1948.

    Article  Google Scholar 

  7. Fambitakoye, O., R. G. Rastogi, J. Tabagh, and P. Vila, Counter electrojet and Esq disappearance, J. Atmos. Terr. Phys., 35, 1119–1126, 1973.

    Article  Google Scholar 

  8. Gangepain, J., M. Crochet, and A. D. Richmond, Comparison of equatorial electrojet models, J. Atmos. Terr. Phys., 39, 1119–1124, 1977.

    Article  Google Scholar 

  9. Maynard, N. C., Measurements of ionospheric currents off the coast of Peru, J. Geophys. Res., 72, 1863–1875, 1967.

    Article  Google Scholar 

  10. Pfaff, R. F. Jr., M. H. Acuna, P. A. Marionni, and N. B. Trivedi, DC polarization electric field and current density and plasma density measurements in the daytime eqatorial electrojet, Geophys. Res. Lett, 24, 1667–1670, 1997.

    Article  Google Scholar 

  11. Prakash, S. and B. H. Subbaraya, Langmuir probe for the measurement of electron density and electron temperature in the ionosphere, Rev. Sci. Inst., 38, 1132–1136, 1967.

    Article  Google Scholar 

  12. Rao, T. R. and S. Prakash, Electron plasma resonances detected by a mutual admittance probe in the equatorial ionosphere, Space Res., XVIII, 281–284, 1978.

    Article  Google Scholar 

  13. Rastogi, R. G., Equatorial sporadic-E and plasma instabilities, Nature, 237, 73–75, 1972.

    Article  Google Scholar 

  14. Rastogi, R. G., On the simultaneous existence of eastward and westward flowing equatorial electrojet currents, Proc. Indian Acad. Sci., A81, 80–92, 1975.

    Google Scholar 

  15. Rastogi, R. G., Geomagnetic field variations at low latitudes and ionospheric electric field, J. Atmos. Terr. Phys., 55, 1375–1381, 1993.

    Article  Google Scholar 

  16. Rastogi, R. G. and H. Chandra, Interplanetary magnetic field and the equatorial ionosphere, J. Atmos. Terr. Phys., 36, 377–379, 1974.

    Article  Google Scholar 

  17. Rastogi, R. G. and A. Patil, A complex structure of equatorial electrojet current, Curr. Sci., 85, 433–436, 1986.

    Google Scholar 

  18. Rastogi, R. G., H. Chandra, and S. C. Chakravarty, The disappearance of equatorial Es and the reversal of electrojet current, Proc. Indian Acad. Sci., 74, 62–67, 1971a.

    Google Scholar 

  19. Rastogi, R. G., H. Chandra, and R. K. Misra, Effect of magnetic activity on electron drifts in the equatorial electrojet region, Nature, 233, 13–15, 1971b.

    Google Scholar 

  20. Rastogi, R. G., H. Chandra, and R. K. Misra, Features of the ionospheric drift over the magnetic equator, Space Res., XII, 983–992, 1972.

    Google Scholar 

  21. Richmond, A. D., Equatorial electrojet, I, Development of a model including winds and instabilities, J. Atmos. Terr. Phys., 35, 1083–1103, 1973.

    Article  Google Scholar 

  22. Ronchi, C., R. N. Sudan, and P. L. Similon, Effect of short-scale turbulence on kilometer wavelength irregularities in the equatorial electrojet, J. Geophys. Res., 95, 189–200, 1990.

    Article  Google Scholar 

  23. Sastry, T. S. G., Quiet day electrojet over Thumba, India, J. Geophys. Res., 73, 1789–1794, 1968.

    Article  Google Scholar 

  24. Sastry, T. S. G., Diurnal change in the parameters of the equatorial elec-trojet as observed by rocket-borne magnetometers, Space Res., X, 778–785, 1970.

    Google Scholar 

  25. Sastry, T. S. G., Daily variations of geomagnetic field at the Indian stations under the electrojet during the period of the July 1966 proton flare, J. Geophys. Res., 78, 1692–1698, 1973.

    Article  Google Scholar 

  26. Sinha, H. S. S. and S. Prakash, Electron densities in the equatorial lower ionosphere over Thumba and SHAR, Adv. Space Res., 18, 311–318, 1996.

    Article  Google Scholar 

  27. Sinha, H. S. S., H. Chandra, and R. G. Rastogi, Longitudinal inequalities in the equatorial electrojet, Proc. Nat. Acad. Sci. India, 69(A), 89–96, 1999.

    Google Scholar 

  28. Subbaraya, B. H., S. Prakash, and S. P. Gupta, Electron densities in the equatorial equatorial lower ionosphere from the Langmuir probe experiments conducted at Thumba during the year 966–1978, Scientific report ISRO-PRL-SR-15-83, 1983.

    Google Scholar 

  29. Subbaraya, B. H., P. Muralikrishna, T. S. G. Sastry, and S. Prakash, A study of the structures of electrical conductivities and the electrostatic field within the equatorial electrojet, Planet. Space Sci, 20, 47–52, 1972.

    Article  Google Scholar 

  30. Sugiura, M. and D. J. Poros, An improved model equatorial electrojet with a meridional current system, J. Geophys. Res., 74, 4025–4034, 1969.

    Article  Google Scholar 

  31. Tiwari, D., A. K. Patra, K. S. Viswanathan, N. Jyoti, C. V. Devasia, K. S. V. Subbarao, and R. Sridharan, Simulatenous radar observations of electrojet plasma irregularities at 18 and 54.95 MHz over Trivandrum, India, J. Geophys. Res., 108(A10), 1368, doi:10.1029/2002JA009698, 2003.

    Article  Google Scholar 

  32. Untiedt, J., A model of the equatorial electrojet involving meridional currents, J. Geophys. Res., 72, 5799–5810, 1967.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Chandra.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rastogi, R.G., Chandra, H. Conductivity, electric field and electron drift velocity within the equatorial electrojet. Earth Planet Sp 58, 1071–1077 (2006). https://doi.org/10.1186/BF03352612

Download citation

Key words

  • Equatorial electrojet
  • equatorial ionosphere