Skip to main content

Heterogeneous distribution of 60Fe in the early solar nebula: Achondrite evidence

Abstract

60Fe-60Ni systematics in quenched angrites and two old eucrites were investigated by secondary ion mass spectrometry. The 60Ni/62Ni isotopic compositions were normal within 2σ errors. The inferred initial 60Fe/56Fe ratios for quenched angrites was (6±9)× 10−9, and similar upper limit values were also obtained from eucrites. Using the age difference of approximately 5 Ma between the quenched angrites and Ca−Al-rich inclusions, the initial 60Fe/56Fe ratio at the start of the solar system was calculated to be approximately (6±9)× 10−8. This initial ratio is significantly smaller than previously published values obtained from chondritic materials, suggesting the heterogeneous distribution of 60Fe in the solar nebula.

References

  1. Amelin, Y., A. N. Krot, I. D. Hutcheon, and A. A. Ulyanov, Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions, Science, 297, 1678–1683, 2002.

    Article  Google Scholar 

  2. Baker, J., M. Bizzaro, N. Wittig, J. Connelly, and H. Haack, Early planetesimal melting from an age of 4.5662 Gyr for differentiated meteorites, Nature, 435, 1127–1131, 2005.

    Article  Google Scholar 

  3. Birck, J. L. and G. W. Lugmair, Nickel and chromium isotopes in Allende inclusions, Earth Planet. Sci. Lett., 90, 131–143, 1988.

    Article  Google Scholar 

  4. Bizzarro, M., J. A. Baker, H. Haack, and K. L. Lundgaard, Rapid timescales for accretion and melting of differentiated planetesimals inferred from 26Al-26Mg chronometry, Astrophys. J., 632, L41–L44, 2005.

    Article  Google Scholar 

  5. Bizzarro, M., D. Ulfbeck, and K. Thrane, Nickel isotopes in meteorites: Evidence for live 60Fe and distinct 62Ni isotope reservoirs in the early Solar System, Lunar Planet. Sci., 37, 2020.pdf, 2006.

  6. Boss, A., Evolution of the solar nebula. VI. Mixing and transport of isotopic heterogeneity, Astrophys. J., 616, 1265–1277, 2004.

    Article  Google Scholar 

  7. Choi, B.-G., G. R. Huss, and G. J. Wasserburg, Search for a correlation between 60Fe and 26Al in chondrites, Lunar Planet. Sci., 30, 1999.

  8. Clayton, R. N., N. Onuma, and T. K. Mayeda, Classification of meteorites based on oxygen isotopes, Earth Planet. Sci. Lett., 30, 10–18, 1976.

    Article  Google Scholar 

  9. Cook, D. L., M. Wadhwa, R. N. Clayton, P. E. Janney, N. Dauphas, and A. M. Davis, Nickel isotope compositions of meteoritic metal: Implications for the initial 60Fe/56Fe ratio in the early solar system, Meteoritics Planet. Sci., 40, 5136.pdf, 2005.

  10. Franchi, I. A., I. P. Wright, and C. T. Pillinger, Constraints on the formation conditions of iron-meteorites based on concentrations and isotopic compositions of nitrogen, Geochim. Cosmochim. Acta, 57, 3105–3121, 1993.

    Article  Google Scholar 

  11. Glavin, D. P., A. Kubny, E. Jagoutz, and G. W. Lugmair, Mn−Cr isotope systematics of the D’Orbigny angrite, Meteoritics Planet. Sci., 39, 693–700, 2004.

    Article  Google Scholar 

  12. Goswami, J. N., K. K. Marhas, M. Chaussidon, M. Gounelle, and B. S. Meyer, Origin of short-lived radionuclides in the early solar system, in Chondrites and the Protoplanetary Disk, edited by A. N. Krot, E. R. D. Scott, and B. Reipurth, ASP Conference Series, Vol. 341, pp. 485–514, 2005.

    Google Scholar 

  13. Gounelle, M. and S. S. Russell, Spatial heterogeneity of short-lived isotopes in the solar accretion disk and early solar system chronology, in Chondrites and the Protoplanetary Disk, edited by A. N. Krot, E. R. D. Scott, and B. Reipurth, ASP Conference Series, Vol. 341, pp. 588–601, 2005.

    Google Scholar 

  14. Ito, M. and J. Ganguly, Diffusion kinetics of Cr in olivine and Mn−Cr thermo-chronology of early solar system objects, Geochim. Cosmochim. Acta, 70, 799–809, 2006.

    Article  Google Scholar 

  15. Kita, N. T., S. Togashi, Y. Morishita, S. Terashima, and H. Yurimoto, Search for 60Ni excesses in MET-78008 ureilite: an ion microprobe study, Antarctic Meteorite Res., 11, 103–121, 1998.

    Google Scholar 

  16. Kita, N. T., H. Nagahara, S. Togashi, and Y. Morishita, A short duration of chondrule formation in the solar nebula: Evidence from 26Al in Semarkona ferromagnesian chondrules, Geochim. Cosmochim. Acta, 64, 3913–3922, 2000.

    Article  Google Scholar 

  17. Kita, N. T., G. R. Huss, S. Tachibana, Y. Amelin, L. E. Nyquist, and I. D. Hutchson, Constraints on the origin of chondrules and CAIs from short-lived and long-lived radionuclides, in Chondrites and the Protoplanetary Disk, edited by A. N. Krot, E. R. D. Scott, and B. Reipurth, ASP Conference Series, Vol. 341, pp. 558–587, 2005.

    Google Scholar 

  18. Kleine, T., K. Mezger, H. Palme, E. Scherer, and C. Munker, The W isotope composition of eucrite metal: constraints on the timing and cause of the thermal metamorphism of basaltic eucrites, Earth Planet. Sci. Lett., 231, 41–52, 2005.

    Article  Google Scholar 

  19. LaTourrette, T. and G. J. Wasserburg, Mg diffusion in anorthite: implications for the formation of early solar system planetesimals, Earth Planet. Sci. Lett., 158, 91–108, 1998.

    Article  Google Scholar 

  20. Lehmann, H., Investigation of the matrix effect of Mg, Si, Ca, Sc, Fe, Y, La and Lu in pyroxene composition synthetic silicate glasses by ion microprobe, Geostandards Newsl., 27, 99–117, 2003.

    Article  Google Scholar 

  21. Lugmair, G. W. and A. Shukolyukov, Early solar system timescales according to Mn−Cr systematics, Geochim. Cosmochim. Acta, 62, 2863–2886, 1998.

    Article  Google Scholar 

  22. MacPherson, G. J., A. M. Davis, and E. K. Zinner, The distribution of aluminum-26 in the early Solar System—A reappraisal, Meteoritics, 30, 365–386, 1995.

    Article  Google Scholar 

  23. Mikouchi, T., M. Miyamoto, G. McKay, and L. Le, Cooling rate estimates of quenched angrites: Approach by crystallization experiments and cooling calculations of olivine xenocrysts, Meteoritics Planet. Sci., 36, A134–135, 2001.

    Google Scholar 

  24. Mostefaoui, S., G. W. Lugmair, and P. Hoppe, In-situ evidence for live iron-60 in the early solar system: A potential heat source for planetary differentiation from a nearby supernova explosion, Lunar Planet. Sci., 35, 1271.pdf, 2004a.

  25. Mostefaoui, S., G. W. Lugmair, P. Hoppe, and A. El Goresy, Evidence for live 60Fe in meteorites, New Astron. Rev., 48, 155–159, 2004b.

    Article  Google Scholar 

  26. Mostefaoui, S., G. W. Lugmair, and P. Hoppe, 60Fe: A heat source for planetary differentiation from a nearby supernova explosion, Astrophys. J., 625, 271–277, 2005.

    Article  Google Scholar 

  27. Moynier, F., J. Blichert-Toft, P. Telouk, and F. Albarede, Excesses of 60Ni in chondrites and iron meteorites, Lunar Planet. Sci., 36, 1593.pdf, 2005.

  28. Nyquist, L. E., C. Y. Shih, H. Weismann, and T. Mikoichi, Fossil 26Al and 53Mn in D’Orbigny and Sahara 99555 and the time scale for angrite magmatism, Lunar Planet. Sci., 34, 1388.pdf, 2003a.

  29. Nyquist, L. E., Y. Reese, H. Wiesmann, C.-Y. Shih, and H. Takeda, Fossil 26Al and 53Mn in the Asuka 881394 eucrite: evidence of the earliest crust on the asteroid 4 Vesta, Earth Planet. Sci. Lett., 214, 11–25, 2003b.

    Article  Google Scholar 

  30. Papanastassiou, D. A., G. J. Wasserburg, and O. Bogdanovski, The Mn−Cr system in CAIs: An update, Lunar Planet. Sci., 36, 2198.pdf, 2005.

    Google Scholar 

  31. Petry, C., S. Chakraborty, and H. Palme, Experimental determination of Ni diffusion coefficients in olivine and their dependence on temperature, composition, oxygen fugacity, and crystallographic orientation, Geochim. Cosmochim. Acta, 68, 4179–4188, 2004.

    Article  Google Scholar 

  32. Quitte, G., C. Latkoczy, A. N. Halliday, M. Schonbachler, and D. Gunther, Iron-60 in the eucrite parent body and the initial 60Fe/56Fe of the solar system, Lunar Planet. Sci., 36, 1827.pdf, 2005.

  33. Reed, S. J. B., E. R. D. Scott, and J. V. P. Long, Ion microprobe analysis of olivine in pallasite meteorites for nickel, Earth Planet. Sci. Lett., 43, 5–12, 1979.

    Article  Google Scholar 

  34. Shukolyukov, A. and G. Lugmair, Live iron-60 in the early solar system, Science, 259, 1138–1142, 1993a.

    Article  Google Scholar 

  35. Shukolyukov, A. and G. Lugmair, 60Fe in eucrites, Earth Planet. Sci. Lett., 119, 159–166, 1993b.

    Article  Google Scholar 

  36. Shukolyukov, A. and G. Lugmair, Iron-60/nickel-60 isotope system in the eucrite Caldera, Meteoritics Planet. Sci., 31, A129, 1996.

    Google Scholar 

  37. Shukolyukov, A. and G. W. Lugmair, Manganese-chromium isotope systematics of enstatite meteorites, Geochim. Cosmochim. Acta, 68, 2875–2888, 2004.

    Article  Google Scholar 

  38. Spivak-Birndorf, L., M. Wadhwa, and P. E. Janney, 26Al-26Mg chronology of the D’Orbigny and Sahara 99555 angrites, Meteoritic Planet. Sci., 40, 5097.pdf, 2005a.

  39. Spivak-Birndorf, L., M. Wadhwa, P. E. Janney, and C. N. Foley, Al−Mg isotopic systematics in the angrite Sahara 99555 and the primitive achondrite Brachina, Lunar Planet. Sci., 36, 2201.pdf, 2005b.

    Google Scholar 

  40. Steele, I. M., R. L. Hervig, I. D. Hutcheon, and J. V. Smith, Ion microprobe techniques and analyses of olivine and low-Ca pyroxene, Am. Mineral, 66, 526–546, 1981.

    Google Scholar 

  41. Sugiura, N. and Q. -Z. Yin, 60Fe-60Ni systematics of some achondrites, Meteoritics Planet. Sci., 40, 5061.pdf, 2005.

  42. Sugiura, N., A. Miyazaki, and K. Yanai, Widespread magmatic activities on the angrite parent body at 4562 Ma ago, Earth Planets Space, 57, e13–e16, 2005.

    Article  Google Scholar 

  43. Tachibana, S. and G. R. Huss, The initial abundance of 60Fe in the solar system, Astrophys. J., 588, L41–L44, 2003.

    Article  Google Scholar 

  44. Tachibana, S., G. R. Huss, N. T. Kita, H. Shimoda, and Y. Morishita, 60Fe in chondrites: Debris from a nearby supernova in the early Solar System? Astrophys. J., 639, L87–90, 2006.

    Article  Google Scholar 

  45. Tera, F., R. W. Carlson, and N. Z. Boctor, Radiometric ages of basaltic achondrites and their relation to the early history of the solar system, Geochim. Cosmochim. Acta, 61, 1713–1731, 1997.

    Article  Google Scholar 

  46. Wadhwa, M., Y. Amelin, O. Bogdanovski, A. Shukolyukov, G. W. Lugmair, and P. Janney, High precision relative and absolute ages for Asuka 881394, a unique and ancient basalt, Lunar Planet. Sci., 36, 2126.pdf, 2005.

  47. Wasserburg, G. J., M. Busso, and R. Gallino, Abundances of actinides and short-lived nonactinides in the interstellar medium: diverse supernova sources for the r-processes, Astrophys. J., 466, L109–L113, 1996.

    Article  Google Scholar 

  48. Wasserburg, G. J., R. Gallino, and M. Busso, A test of the supernova trigger hypothesis with 60Fe and 26Al, Astrophys. J., 500, L189–L193, 1998.

    Article  Google Scholar 

  49. Yin, Q.-Z., S. B. Jacobsen, K. Yamashita, J. Blichert-Toft, P. Telouk, and F. Albarede, A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites, Nature, 418, 949–952, 2002.

    Article  Google Scholar 

  50. Zartman, R. E., E. Jagoutz, and S. A. Bowring, Pb−Pb dating of the D’Orbigny and Asuka 881371 angrites and a second absolute time calibration of the Mn−Cr chronometer, Lunar Planet. Sci., 37, 1580.pdf, 2006.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Naoji Sugiura.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sugiura, N., Miyazaki, A. & Yin, Q. Heterogeneous distribution of 60Fe in the early solar nebula: Achondrite evidence. Earth Planet Sp 58, 1079–1086 (2006). https://doi.org/10.1186/BF03352613

Download citation

Key words

  • Solar nebula
  • 60Fe
  • angrite
  • eucrite
  • SIMS
  • age