Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Heterogeneous distribution of 60Fe in the early solar nebula: Achondrite evidence


60Fe-60Ni systematics in quenched angrites and two old eucrites were investigated by secondary ion mass spectrometry. The 60Ni/62Ni isotopic compositions were normal within 2σ errors. The inferred initial 60Fe/56Fe ratios for quenched angrites was (6±9)× 10−9, and similar upper limit values were also obtained from eucrites. Using the age difference of approximately 5 Ma between the quenched angrites and Ca−Al-rich inclusions, the initial 60Fe/56Fe ratio at the start of the solar system was calculated to be approximately (6±9)× 10−8. This initial ratio is significantly smaller than previously published values obtained from chondritic materials, suggesting the heterogeneous distribution of 60Fe in the solar nebula.


  1. Amelin, Y., A. N. Krot, I. D. Hutcheon, and A. A. Ulyanov, Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions, Science, 297, 1678–1683, 2002.

  2. Baker, J., M. Bizzaro, N. Wittig, J. Connelly, and H. Haack, Early planetesimal melting from an age of 4.5662 Gyr for differentiated meteorites, Nature, 435, 1127–1131, 2005.

  3. Birck, J. L. and G. W. Lugmair, Nickel and chromium isotopes in Allende inclusions, Earth Planet. Sci. Lett., 90, 131–143, 1988.

  4. Bizzarro, M., J. A. Baker, H. Haack, and K. L. Lundgaard, Rapid timescales for accretion and melting of differentiated planetesimals inferred from 26Al-26Mg chronometry, Astrophys. J., 632, L41–L44, 2005.

  5. Bizzarro, M., D. Ulfbeck, and K. Thrane, Nickel isotopes in meteorites: Evidence for live 60Fe and distinct 62Ni isotope reservoirs in the early Solar System, Lunar Planet. Sci., 37, 2020.pdf, 2006.

  6. Boss, A., Evolution of the solar nebula. VI. Mixing and transport of isotopic heterogeneity, Astrophys. J., 616, 1265–1277, 2004.

  7. Choi, B.-G., G. R. Huss, and G. J. Wasserburg, Search for a correlation between 60Fe and 26Al in chondrites, Lunar Planet. Sci., 30, 1999.

  8. Clayton, R. N., N. Onuma, and T. K. Mayeda, Classification of meteorites based on oxygen isotopes, Earth Planet. Sci. Lett., 30, 10–18, 1976.

  9. Cook, D. L., M. Wadhwa, R. N. Clayton, P. E. Janney, N. Dauphas, and A. M. Davis, Nickel isotope compositions of meteoritic metal: Implications for the initial 60Fe/56Fe ratio in the early solar system, Meteoritics Planet. Sci., 40, 5136.pdf, 2005.

  10. Franchi, I. A., I. P. Wright, and C. T. Pillinger, Constraints on the formation conditions of iron-meteorites based on concentrations and isotopic compositions of nitrogen, Geochim. Cosmochim. Acta, 57, 3105–3121, 1993.

  11. Glavin, D. P., A. Kubny, E. Jagoutz, and G. W. Lugmair, Mn−Cr isotope systematics of the D’Orbigny angrite, Meteoritics Planet. Sci., 39, 693–700, 2004.

  12. Goswami, J. N., K. K. Marhas, M. Chaussidon, M. Gounelle, and B. S. Meyer, Origin of short-lived radionuclides in the early solar system, in Chondrites and the Protoplanetary Disk, edited by A. N. Krot, E. R. D. Scott, and B. Reipurth, ASP Conference Series, Vol. 341, pp. 485–514, 2005.

  13. Gounelle, M. and S. S. Russell, Spatial heterogeneity of short-lived isotopes in the solar accretion disk and early solar system chronology, in Chondrites and the Protoplanetary Disk, edited by A. N. Krot, E. R. D. Scott, and B. Reipurth, ASP Conference Series, Vol. 341, pp. 588–601, 2005.

  14. Ito, M. and J. Ganguly, Diffusion kinetics of Cr in olivine and Mn−Cr thermo-chronology of early solar system objects, Geochim. Cosmochim. Acta, 70, 799–809, 2006.

  15. Kita, N. T., S. Togashi, Y. Morishita, S. Terashima, and H. Yurimoto, Search for 60Ni excesses in MET-78008 ureilite: an ion microprobe study, Antarctic Meteorite Res., 11, 103–121, 1998.

  16. Kita, N. T., H. Nagahara, S. Togashi, and Y. Morishita, A short duration of chondrule formation in the solar nebula: Evidence from 26Al in Semarkona ferromagnesian chondrules, Geochim. Cosmochim. Acta, 64, 3913–3922, 2000.

  17. Kita, N. T., G. R. Huss, S. Tachibana, Y. Amelin, L. E. Nyquist, and I. D. Hutchson, Constraints on the origin of chondrules and CAIs from short-lived and long-lived radionuclides, in Chondrites and the Protoplanetary Disk, edited by A. N. Krot, E. R. D. Scott, and B. Reipurth, ASP Conference Series, Vol. 341, pp. 558–587, 2005.

  18. Kleine, T., K. Mezger, H. Palme, E. Scherer, and C. Munker, The W isotope composition of eucrite metal: constraints on the timing and cause of the thermal metamorphism of basaltic eucrites, Earth Planet. Sci. Lett., 231, 41–52, 2005.

  19. LaTourrette, T. and G. J. Wasserburg, Mg diffusion in anorthite: implications for the formation of early solar system planetesimals, Earth Planet. Sci. Lett., 158, 91–108, 1998.

  20. Lehmann, H., Investigation of the matrix effect of Mg, Si, Ca, Sc, Fe, Y, La and Lu in pyroxene composition synthetic silicate glasses by ion microprobe, Geostandards Newsl., 27, 99–117, 2003.

  21. Lugmair, G. W. and A. Shukolyukov, Early solar system timescales according to Mn−Cr systematics, Geochim. Cosmochim. Acta, 62, 2863–2886, 1998.

  22. MacPherson, G. J., A. M. Davis, and E. K. Zinner, The distribution of aluminum-26 in the early Solar System—A reappraisal, Meteoritics, 30, 365–386, 1995.

  23. Mikouchi, T., M. Miyamoto, G. McKay, and L. Le, Cooling rate estimates of quenched angrites: Approach by crystallization experiments and cooling calculations of olivine xenocrysts, Meteoritics Planet. Sci., 36, A134–135, 2001.

  24. Mostefaoui, S., G. W. Lugmair, and P. Hoppe, In-situ evidence for live iron-60 in the early solar system: A potential heat source for planetary differentiation from a nearby supernova explosion, Lunar Planet. Sci., 35, 1271.pdf, 2004a.

  25. Mostefaoui, S., G. W. Lugmair, P. Hoppe, and A. El Goresy, Evidence for live 60Fe in meteorites, New Astron. Rev., 48, 155–159, 2004b.

  26. Mostefaoui, S., G. W. Lugmair, and P. Hoppe, 60Fe: A heat source for planetary differentiation from a nearby supernova explosion, Astrophys. J., 625, 271–277, 2005.

  27. Moynier, F., J. Blichert-Toft, P. Telouk, and F. Albarede, Excesses of 60Ni in chondrites and iron meteorites, Lunar Planet. Sci., 36, 1593.pdf, 2005.

  28. Nyquist, L. E., C. Y. Shih, H. Weismann, and T. Mikoichi, Fossil 26Al and 53Mn in D’Orbigny and Sahara 99555 and the time scale for angrite magmatism, Lunar Planet. Sci., 34, 1388.pdf, 2003a.

  29. Nyquist, L. E., Y. Reese, H. Wiesmann, C.-Y. Shih, and H. Takeda, Fossil 26Al and 53Mn in the Asuka 881394 eucrite: evidence of the earliest crust on the asteroid 4 Vesta, Earth Planet. Sci. Lett., 214, 11–25, 2003b.

  30. Papanastassiou, D. A., G. J. Wasserburg, and O. Bogdanovski, The Mn−Cr system in CAIs: An update, Lunar Planet. Sci., 36, 2198.pdf, 2005.

  31. Petry, C., S. Chakraborty, and H. Palme, Experimental determination of Ni diffusion coefficients in olivine and their dependence on temperature, composition, oxygen fugacity, and crystallographic orientation, Geochim. Cosmochim. Acta, 68, 4179–4188, 2004.

  32. Quitte, G., C. Latkoczy, A. N. Halliday, M. Schonbachler, and D. Gunther, Iron-60 in the eucrite parent body and the initial 60Fe/56Fe of the solar system, Lunar Planet. Sci., 36, 1827.pdf, 2005.

  33. Reed, S. J. B., E. R. D. Scott, and J. V. P. Long, Ion microprobe analysis of olivine in pallasite meteorites for nickel, Earth Planet. Sci. Lett., 43, 5–12, 1979.

  34. Shukolyukov, A. and G. Lugmair, Live iron-60 in the early solar system, Science, 259, 1138–1142, 1993a.

  35. Shukolyukov, A. and G. Lugmair, 60Fe in eucrites, Earth Planet. Sci. Lett., 119, 159–166, 1993b.

  36. Shukolyukov, A. and G. Lugmair, Iron-60/nickel-60 isotope system in the eucrite Caldera, Meteoritics Planet. Sci., 31, A129, 1996.

  37. Shukolyukov, A. and G. W. Lugmair, Manganese-chromium isotope systematics of enstatite meteorites, Geochim. Cosmochim. Acta, 68, 2875–2888, 2004.

  38. Spivak-Birndorf, L., M. Wadhwa, and P. E. Janney, 26Al-26Mg chronology of the D’Orbigny and Sahara 99555 angrites, Meteoritic Planet. Sci., 40, 5097.pdf, 2005a.

  39. Spivak-Birndorf, L., M. Wadhwa, P. E. Janney, and C. N. Foley, Al−Mg isotopic systematics in the angrite Sahara 99555 and the primitive achondrite Brachina, Lunar Planet. Sci., 36, 2201.pdf, 2005b.

  40. Steele, I. M., R. L. Hervig, I. D. Hutcheon, and J. V. Smith, Ion microprobe techniques and analyses of olivine and low-Ca pyroxene, Am. Mineral, 66, 526–546, 1981.

  41. Sugiura, N. and Q. -Z. Yin, 60Fe-60Ni systematics of some achondrites, Meteoritics Planet. Sci., 40, 5061.pdf, 2005.

  42. Sugiura, N., A. Miyazaki, and K. Yanai, Widespread magmatic activities on the angrite parent body at 4562 Ma ago, Earth Planets Space, 57, e13–e16, 2005.

  43. Tachibana, S. and G. R. Huss, The initial abundance of 60Fe in the solar system, Astrophys. J., 588, L41–L44, 2003.

  44. Tachibana, S., G. R. Huss, N. T. Kita, H. Shimoda, and Y. Morishita, 60Fe in chondrites: Debris from a nearby supernova in the early Solar System? Astrophys. J., 639, L87–90, 2006.

  45. Tera, F., R. W. Carlson, and N. Z. Boctor, Radiometric ages of basaltic achondrites and their relation to the early history of the solar system, Geochim. Cosmochim. Acta, 61, 1713–1731, 1997.

  46. Wadhwa, M., Y. Amelin, O. Bogdanovski, A. Shukolyukov, G. W. Lugmair, and P. Janney, High precision relative and absolute ages for Asuka 881394, a unique and ancient basalt, Lunar Planet. Sci., 36, 2126.pdf, 2005.

  47. Wasserburg, G. J., M. Busso, and R. Gallino, Abundances of actinides and short-lived nonactinides in the interstellar medium: diverse supernova sources for the r-processes, Astrophys. J., 466, L109–L113, 1996.

  48. Wasserburg, G. J., R. Gallino, and M. Busso, A test of the supernova trigger hypothesis with 60Fe and 26Al, Astrophys. J., 500, L189–L193, 1998.

  49. Yin, Q.-Z., S. B. Jacobsen, K. Yamashita, J. Blichert-Toft, P. Telouk, and F. Albarede, A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites, Nature, 418, 949–952, 2002.

  50. Zartman, R. E., E. Jagoutz, and S. A. Bowring, Pb−Pb dating of the D’Orbigny and Asuka 881371 angrites and a second absolute time calibration of the Mn−Cr chronometer, Lunar Planet. Sci., 37, 1580.pdf, 2006.

Download references

Author information



Corresponding author

Correspondence to Naoji Sugiura.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sugiura, N., Miyazaki, A. & Yin, Q. Heterogeneous distribution of 60Fe in the early solar nebula: Achondrite evidence. Earth Planet Sp 58, 1079–1086 (2006).

Download citation

Key words

  • Solar nebula
  • 60Fe
  • angrite
  • eucrite
  • SIMS
  • age