Skip to main content

Volume 58 Supplement 10

Special Issue: Paleomagnetism and Tectonics in Latinamerica

Full particle simulation of a perpendicular collisionless shock: A shock-rest-frame model

Abstract

The full kinetic dynamics of a perpendicular collisionless shock is studied by means of a one-dimensional electromagnetic full particle simulation. The present simulation domain is taken in the shock rest frame in contrast to the previous full particle simulations of shocks. Preliminary results show that the downstream state falls into a unique cyclic reformation state for a given set of upstream parameters through the self-consistent kinetic processes.

References

  • Hada, T. et al., Shock front nonstationarity of supercritical perpendicular shocks, J. Geophys. Res., 108, 1233, doi:10.1029/2002JA009339, 2003.

    Article  Google Scholar 

  • Hoshino, M. and N. Shimada, Nonthermal electrons at high Mach number shocks: Electron shock surfing acceleration, Astrophys. J., 572, 880–887, 2002.

    Article  Google Scholar 

  • Hudson, P. D., Discontinuities in an anisotropic plasma and their identification in the solar wind, Planet. Space Sci., 18, 1611–1622, 1970.

    Article  Google Scholar 

  • Kan, J. R. and D. W. Swift, Structure of the quasi-parallel bow shock: Results of numerical simulations, J. Geophys. Res., 88, 6919–6925, 1983.

    Article  Google Scholar 

  • Lee, R. E. et al., Numerical simulations of local shock reformation and ion acceleration in supernova remnants, Astrophys. J., 604, 187–195, 2004.

    Article  Google Scholar 

  • Lembege, B. et al., Selected problems in collisionless-shock physics, Space Sci. Rev., 110, 161–226, 2004.

    Article  Google Scholar 

  • Lembege, B., Full particle electromagnetic simulation of collisionless shocks, in Space Plasma Simulations, edited by J. Buchner, C.T. Dum, and M. Scholer, pp. 54–78, Springer-Verlag Berlin Heidelberg, 2003.

    Chapter  Google Scholar 

  • Lembege, B. and J. M. Dawson, Plasma heating through a supercritical oblique shock, Phys. Fluids, 30, 1110–1114, 1987a.

    Article  Google Scholar 

  • Lembege, B. and J. M. Dawson, Self-consistent study of a perpendicular collisionless and nonresistive shock, Phys. Fluids, 30, 1767–1788, 1987b.

    Article  Google Scholar 

  • Lembege, B. and P. Savoini, Nonstationarity of a two-dimensional quasiperpendicular supercritical collisionless shock by self-reformation, Phys. Fluids B, 4, 3533–3548, 1992.

    Article  Google Scholar 

  • Leroy, M. M. et al., Simulation of a perpendicular bow shock, Geophys. Res. Lett., 8, 1269–1272, 1981.

    Article  Google Scholar 

  • Leroy, M. M. et al., The structure of perpendicular bow shocks, J. Geophys. Res., 87, 5081–5094, 1982.

    Article  Google Scholar 

  • Nishimura, K. et al., Particle simulations of re-formation at collisionless perpendicular shocks: Coherent behavior of reflected ions, J. Geophys. Res., 108, 1182, doi:10.1029/2002JA009671, 2003.

    Article  Google Scholar 

  • Ohsawa. Y., Strong ion acceleration by a collisionless magnetosonic shock wave propagating perpendicularly to a magnetic field, Phys. Fluids, 28, 2130–2136, 1985.

    Article  Google Scholar 

  • Omidi, N. and D. Winske, Kinetic structure of slow shocks: Effects of the electromagnetic ion/ion cyclotron instability, J. Geophys. Res., 97, 14801–14821, 1992.

    Article  Google Scholar 

  • Omura, Y. and H. Matsumoto, KEMPO1: Technical guide to one-dimensional electromagnetic particle code, in Computer Space Plasma Physics, edited by H. Matsumoto and Y. Omura, 487 pp, Terra Scientific, Tokyo, 1993.

    Google Scholar 

  • Quest, K. B., Simulations of high-Mach-number collisionless perpendicular shocks in astrophysical plasmas, Phys. Rev. Lett., 54, 1872–1874, 1985.

    Article  Google Scholar 

  • Schmitz, H. et al., The influence of electron temperature and magnetic field strength on cosmic-ray injection in high Mach number shocks, Astrophys. J., 570, 637–646, 2002a.

    Article  Google Scholar 

  • Schmitz, H. et al., Electron preacceleration mechanisms in the foot region of high Alfvenic Mach number shocks, Astrophys. J., 579, 327–336, 2002b.

    Article  Google Scholar 

  • Scholer, M. et al., Quasi-perpendicular shocks: Length scale of the cross-shock potential, shock reformation, and implication for shock surfing, J. Geophys. Res., 108, 1014, doi:10.1029/2002JA009515, 2003.

    Article  Google Scholar 

  • Shimada N. and M. Hoshino, Strong electron acceleration at high Mach number shock waves: Simulation study of electron dynamics, Astrophys. J., 543, L67–L71, 2000.

    Article  Google Scholar 

  • Umeda, T., Study on nonlinear processes of electron beam instabilities via computer simulations, Ph.D. Thesis, Kyoto University, 2004.

    Google Scholar 

  • Umeda, T. et al., An improved masking method for absorbing boundaries in electromagnetic particle simulations, Comput. Phys. Commun., 137, 286–299, 2001.

    Article  Google Scholar 

  • Umeda, T. et al., A new charge conservation method in electromagnetic particle simulations, Comput. Phys. Commun., 156, 73–85, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Umeda.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Umeda, T., Yamazaki, R. Full particle simulation of a perpendicular collisionless shock: A shock-rest-frame model. Earth Planet Sp 58, e41–e44 (2006). https://doi.org/10.1186/BF03352617

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352617

Key words

  • Collisionless shock
  • particle-in-cell simulation
  • shock rest frame