Skip to main content

Full particle simulation of a perpendicular collisionless shock: A shock-rest-frame model

Abstract

The full kinetic dynamics of a perpendicular collisionless shock is studied by means of a one-dimensional electromagnetic full particle simulation. The present simulation domain is taken in the shock rest frame in contrast to the previous full particle simulations of shocks. Preliminary results show that the downstream state falls into a unique cyclic reformation state for a given set of upstream parameters through the self-consistent kinetic processes.

References

  1. Hada, T. et al., Shock front nonstationarity of supercritical perpendicular shocks, J. Geophys. Res., 108, 1233, doi:10.1029/2002JA009339, 2003.

    Article  Google Scholar 

  2. Hoshino, M. and N. Shimada, Nonthermal electrons at high Mach number shocks: Electron shock surfing acceleration, Astrophys. J., 572, 880–887, 2002.

    Article  Google Scholar 

  3. Hudson, P. D., Discontinuities in an anisotropic plasma and their identification in the solar wind, Planet. Space Sci., 18, 1611–1622, 1970.

    Article  Google Scholar 

  4. Kan, J. R. and D. W. Swift, Structure of the quasi-parallel bow shock: Results of numerical simulations, J. Geophys. Res., 88, 6919–6925, 1983.

    Article  Google Scholar 

  5. Lee, R. E. et al., Numerical simulations of local shock reformation and ion acceleration in supernova remnants, Astrophys. J., 604, 187–195, 2004.

    Article  Google Scholar 

  6. Lembege, B. et al., Selected problems in collisionless-shock physics, Space Sci. Rev., 110, 161–226, 2004.

    Article  Google Scholar 

  7. Lembege, B., Full particle electromagnetic simulation of collisionless shocks, in Space Plasma Simulations, edited by J. Buchner, C.T. Dum, and M. Scholer, pp. 54–78, Springer-Verlag Berlin Heidelberg, 2003.

    Google Scholar 

  8. Lembege, B. and J. M. Dawson, Plasma heating through a supercritical oblique shock, Phys. Fluids, 30, 1110–1114, 1987a.

    Article  Google Scholar 

  9. Lembege, B. and J. M. Dawson, Self-consistent study of a perpendicular collisionless and nonresistive shock, Phys. Fluids, 30, 1767–1788, 1987b.

    Article  Google Scholar 

  10. Lembege, B. and P. Savoini, Nonstationarity of a two-dimensional quasiperpendicular supercritical collisionless shock by self-reformation, Phys. Fluids B, 4, 3533–3548, 1992.

    Article  Google Scholar 

  11. Leroy, M. M. et al., Simulation of a perpendicular bow shock, Geophys. Res. Lett., 8, 1269–1272, 1981.

    Article  Google Scholar 

  12. Leroy, M. M. et al., The structure of perpendicular bow shocks, J. Geophys. Res., 87, 5081–5094, 1982.

    Article  Google Scholar 

  13. Nishimura, K. et al., Particle simulations of re-formation at collisionless perpendicular shocks: Coherent behavior of reflected ions, J. Geophys. Res., 108, 1182, doi:10.1029/2002JA009671, 2003.

    Article  Google Scholar 

  14. Ohsawa. Y., Strong ion acceleration by a collisionless magnetosonic shock wave propagating perpendicularly to a magnetic field, Phys. Fluids, 28, 2130–2136, 1985.

    Article  Google Scholar 

  15. Omidi, N. and D. Winske, Kinetic structure of slow shocks: Effects of the electromagnetic ion/ion cyclotron instability, J. Geophys. Res., 97, 14801–14821, 1992.

    Article  Google Scholar 

  16. Omura, Y. and H. Matsumoto, KEMPO1: Technical guide to one-dimensional electromagnetic particle code, in Computer Space Plasma Physics, edited by H. Matsumoto and Y. Omura, 487 pp, Terra Scientific, Tokyo, 1993.

    Google Scholar 

  17. Quest, K. B., Simulations of high-Mach-number collisionless perpendicular shocks in astrophysical plasmas, Phys. Rev. Lett., 54, 1872–1874, 1985.

    Article  Google Scholar 

  18. Schmitz, H. et al., The influence of electron temperature and magnetic field strength on cosmic-ray injection in high Mach number shocks, Astrophys. J., 570, 637–646, 2002a.

    Article  Google Scholar 

  19. Schmitz, H. et al., Electron preacceleration mechanisms in the foot region of high Alfvenic Mach number shocks, Astrophys. J., 579, 327–336, 2002b.

    Article  Google Scholar 

  20. Scholer, M. et al., Quasi-perpendicular shocks: Length scale of the cross-shock potential, shock reformation, and implication for shock surfing, J. Geophys. Res., 108, 1014, doi:10.1029/2002JA009515, 2003.

    Article  Google Scholar 

  21. Shimada N. and M. Hoshino, Strong electron acceleration at high Mach number shock waves: Simulation study of electron dynamics, Astrophys. J., 543, L67–L71, 2000.

    Article  Google Scholar 

  22. Umeda, T., Study on nonlinear processes of electron beam instabilities via computer simulations, Ph.D. Thesis, Kyoto University, 2004.

    Google Scholar 

  23. Umeda, T. et al., An improved masking method for absorbing boundaries in electromagnetic particle simulations, Comput. Phys. Commun., 137, 286–299, 2001.

    Article  Google Scholar 

  24. Umeda, T. et al., A new charge conservation method in electromagnetic particle simulations, Comput. Phys. Commun., 156, 73–85, 2003.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takayuki Umeda.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Umeda, T., Yamazaki, R. Full particle simulation of a perpendicular collisionless shock: A shock-rest-frame model. Earth Planet Sp 58, e41–e44 (2006). https://doi.org/10.1186/BF03352617

Download citation

Key words

  • Collisionless shock
  • particle-in-cell simulation
  • shock rest frame