Skip to main content

Relative paleointensity of the geomagnetic field over the last 21,000 years BP from sediment cores, Lake El Trébol (Patagonia, Argentina)

Abstract

Four cores from Lake El Trébol (Patagonia, Argentina) have been used to estimate regional geomagnetic paleointensity. The rock magnetic studies indicate that the magnetic mineralogy of the clay-rich sediments is dominated by pseudo-single domain magnetite in a range of grain sizes and concentration which are suitable for paleointensity studies. The remanent magnetisation at 20 mT (NRM20 mT) has been normalised using the an-hysteric remanent magnetisation at 20 mT (ARM20 mT), the saturation of the isothermal remanent magnetisation at 20 mT (SIRM20 mT) and the low field magnetic susceptibility (k). Coherence function analysis indicates that the normalised records are free of environmental influences. Our paleointensity (NRM20 mT/ARM20 mT) versus age curve shows good agreement with published record from another lake in Argentina and with records from other parts of the world, suggesting that, in suitable sediments, paleointensity of the geomagnetic field can give a globally coherent, dominantly dipolar signal.

References

  1. Banerjee, S. K., J. King, and J. Marvin, A rapid method for magnetic granulometry with applications to environmental studies, Geophys. Res. Lett., 8, 333–336, 1981.

    Article  Google Scholar 

  2. Bianchi, M. M., J. Masaferro, G. Roman Ross, A. J. Amos, and A. Lami, Late Pleistocene and early Holocene ecological response of Lake El Trébol (Patagonia, Argentina) to environmental changes, J. Paleolimnology, 22, 137–148, 1999.

    Article  Google Scholar 

  3. Brachfeld, S. A. and S. A. Banerjee, A new high-resolution geomagnetic relative paleointensity record for the North American Holocene: A comparison of sedimentary and absolute intensity data, J. Geophys. Res., 105, B1, 821–834, 2000.

    Google Scholar 

  4. Brachfeld, S. A., E. Domack, C. Kisel, C. Laj, A. Leventer, S. Ishman, R. Gilbert, A. Camerlenghi, and L. B. Eglinton, Holocene history of the Larsen-A Ice Shelf constrained by geomagnetic paleointensity dating, Geology, 31(9), 749-752, 2003

    Article  Google Scholar 

  5. Channell, J. E. T., Geomagnetic paleointensity and directional secular variation at Ocean Drilling Program (ODP) Site 984 (Bjorn Drift) since 500 ka: Comparisons with ODP Site 983 (Gardar Drift), J. Geophys. Res., 104(B10), 22,937–22,951, 1999.

    Article  Google Scholar 

  6. Channell, J. E. T., J. S. Stoner, D. A. Hodell, and C. D. Charles, Geomagnetic paleointensity for the last 100 kyrfrom the sub-Antartic South Atlantic: A tool for inter-hemispheric correlation, Earth Planet. Sci. Lett., 175(1–2), 145–160, 2000.

    Article  Google Scholar 

  7. Constable, C. G., Eastern Australian geomagnetic field intensity over the last 14000 yr., Geophys. J. Res, 81, 121–130, 1985.

    Google Scholar 

  8. Day, R. M., D. Fuller, and V. A. Schmidt, Hysteresis properties of titanomagnetite: Grain size and composition dependence, Phys. Earth Planet. Inter., 13, 260–266, 1977.

    Article  Google Scholar 

  9. del Valle, R. A., J. M. Lirio, H. J. Nunez, A. Tatur, and C. A. Rinaldi, J. C. Lusky, and A. J. Amos, Reconstrucción paleoambiental Pleistoceno-Holoceno en latitudes medias al E. de los Andes, Actas XIII Congreso Geológico Argentino, 4, 85–102, 1996.

    Google Scholar 

  10. del Valle, R. A., J. M. Lirio, H. J. Nunez, A. Tatur, and C. A. Rinaldi, Sedimentary cores from Mascardi Lake, Argentina: a key site to study Elpalafquen paleolake, in Southern Hemisphere Paleo and Neoclimates, edited by P. Smolka and W. Volkheimer, 381 pp., Springer Verlag, Heidelburg, 2000.

    Google Scholar 

  11. Flint, R. F. and F. Fidalgo, Glacial Geology of the east flank of the Argentine Andes between Lat. 41° 10′ and Lat. 43° 10′S, Geolog. Soc. Am. Bull., 75, 335–352, 1964.

    Article  Google Scholar 

  12. Flint, R. F. and F. Fidalgo, Glacial drift in the Eastern Argentine Andes between Lat. 41° 10′ and Lat. 43°10′S, Geolog. Soc. Am. Bull., 80, 1043–1052, 1969.

    Article  Google Scholar 

  13. Frank, U., N. R. Nowaczyk, J. F. W. Negendank, and M. Melles, A paleomagnetic record from Lake Lama, northern Central Siberia, Phys. Earth and Planet. Inter., 133, 3–20, 2002.

    Article  Google Scholar 

  14. Gogorza, C. S. G., A. M. Sinito, I. Di Tomasso, J. F Vilas, K. M. Creer, and H. Nunez, Holocene Secular variation recorded by sediments from Lake Escondido (South Argentina), Earth Planets Space, 51, 93–106, 1999.

    Article  Google Scholar 

  15. Gogorza, C. S. G., A. M. Sinito, I. Di Tomasso, J. F Vilas, K. M. Creer, and H. Nunez, Geomagnetic Secular Variations 0–12000 yr. as recorded by sediments from Moreno Lake (South Argentina), J. South American Earth Sci., 13, 7, 627–645, 2001.

    Google Scholar 

  16. Gogorza, C. S. G., A. M. Sinito, J. M. Lirio, H. Nunez, M. A. E. Chaparro and J. F Vilas, Paleosecular Variations 0–19,000 years recorded by sediments from Escondido Lake (Argentina), Phys. Earth and Planet. Inter., 133, 35–55, 2002.

    Article  Google Scholar 

  17. Gogorza, C. S. G., J. M. Lirio, H. Nunez, M. A. E. Chaparro, H. R. Bertorello, and A. M. Sinito, Paleointensity studies on Holocene-Pleistocene sediments from Lake Escondido, Argentina, Phys. Earth and Planet. Inter, 145, 219–238, 2004.

    Article  Google Scholar 

  18. Harwart, S., B. Hagedorn, M. Melles, and U. Wand, Lithological and biochemical properties in sediments of Lama Lake as indicators for the late Pleistocene and Holocene ecosystem development of the southern Taymyr Peninsula, Central Siberia, Boreas, 28, 167–180, 1999.

    Article  Google Scholar 

  19. Hunt, C. P., S. K. Banerjee, J. Han, P. A. Solheid, E. Oches, W. Sun, and T. Liu, Rock-magnetic proxies of climate change in the loess-paleosol sequences of the western Loess Plateau of China, Geophys. J. Int., 123, 232–244, 1995.

    Article  Google Scholar 

  20. Irurzun, M. A., C. S. G. Gogorza, A. M. Sinito, J. M. Lirio, H. Nunez, and M. A. E. Chaparro, Paleosecular variations recorded by sediments from Lake El Trébol, Argentina, Phys. Earth and Planet. Inter., 154, 1–17, 2006.

    Article  Google Scholar 

  21. King, J., S. K. Banerjee, J. Marvin, and Ö. Özdemir, A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: Some results from lake sediments, Earth Planet. Sci. Lett., 59, 404–419, 1982.

    Article  Google Scholar 

  22. King, J. W., S. K. Banerjee, and J. Marvin, A new rock magnetic approach to selecting sediments for geomagnetic paleointensity studies: Application to paleointensity for the last 4000 years, J. Geophys. Res., 88, 5911–5921,1983.

    Article  Google Scholar 

  23. Kruiver, P. P., Y. S. Kok, M. J. Dekkers, C. G. Langereis, and C. Laj, A pseudo-Thellier relative paleointensity record, and rock magnetic and geochemical parameters in relation to climate during the last 276 kyr. in the Azores region, Geophys. J. Int., 136, 757–770, 1999.

    Article  Google Scholar 

  24. Laj, C., C. Kissel, A. Mazaud, J. E. T. Channell, and J. Beer, North Atlantic palaeointensity stack since 75 ka (NAPIS-75) and the duration of the Laschamp event, Philos. Trans. R. Soc. London, Ser. A, 358, 1009–1025, 2000.

    Article  Google Scholar 

  25. Lehman, B., C. Laj, C. Kissel, A. Mazaud, M. Paterne and L. Labeyrie, Relative changes of the geomagnetic field intensity during the last 280 kyear from piston cores in the Azores area, Phys. Earth Planet. Inter., 93, 269–284, 1996.

    Article  Google Scholar 

  26. Levi, S. and S. K. Banerjee, On the possibility of obtaining relative paleointensities from lake sediments, Earth Planet. Sci. Lett., 29, 219–226, 1976.

    Article  Google Scholar 

  27. Meynadier, L., J. P. Valet, R. Weeks, N. J. Shackleton, and V. L. Hagee, Relative geomagnetic intensity of the field during the last 140 ka, Earth Planet. Sci. Lett., 114, 39–57, 1992.

    Article  Google Scholar 

  28. Nowaczyk, N. R., S. Harwart, and M. Melles, Impact of early diagenesis and bulk particle grain size distribution on estimates of relative geomagnetic palaeointensity variations in sediments from Lama Lake, northern Central Siberia, Geophys. J. Int., 145, 300–306, 2001.

    Article  Google Scholar 

  29. Pan, Y., R. Zhu, J. Shaw, Q. Liu, and B. Guo, Can relative paleointensities be determined from the normalised magnetisation of the wind-blown loess of China?, J. Geophys. Res., 106(B9), 19,221–19,232, 2001.

    Article  Google Scholar 

  30. Peck, J. A., J. W. King, S. M. Colman, and V. A. Kravchinsky, An 84-kyr. paleomagnetic record from the sediments of Lake Baikal, Siberia, J. Geophys. Res., 101(B5), 11,365–11,385, 1996.

    Article  Google Scholar 

  31. Peng, L. and J. W. King, A late Quaternary geomagnetic secular variation record from Lake Waiau, Hawaii, and the Question of the Pacific nondipole low, J. Geophys. Res., 97(B4), 4,407–4,424, 1992.

    Article  Google Scholar 

  32. Rabassa, J. and Ch. Clapperton, Quaternary glaciations of the Southern Andes, Quat. Sci. Rev., 9, 153–174, 1990.

    Article  Google Scholar 

  33. Roberts, A. P., B. Lehman, R. Weeks, K. Verosub, and C. Laj, Relative paleointensity of the geomagnetic field over the last 200,000 years from ODP Sites 883 and 884, North Pacific Ocean, Earth Planet. Sci. Lett., 152, 11–23, 1997.

    Article  Google Scholar 

  34. Sagnotti, L., P. Macri, A. Camerlenghi, and M. Rebesco, Environmental magnetism of Antarctic Late Pleistocene sediments and interhemi-spheric correlation of climatic events, Earth Planet. Sci. Lett., 192, 65–80, 2001.

    Article  Google Scholar 

  35. Sinito, A. M. and H. J. Nunez, Paleosecular variation recorded on lake sediments from South Argentina, J. Geomag. Geoelectr., 49, 473–483, 1997.

    Article  Google Scholar 

  36. Stoner, J. S., C. Laj, J. E. T. Channell, and C. Kissel, South Atlantic and North Atlantic geomagnetic paleointensity stacks (0–80 ka): implications for inter-hemispheric correlation, Quat. Sci. Rev., 21, 1141–1151, 2002.

    Article  Google Scholar 

  37. St-Onge, G., J. S. Stoner, and C. Hillaire-Marcel, Holocene paleomagnetic records from St. Lawrence Estuary, eastern Canada: centennial-to millennial-scale geomagnetic modulation of cosmogenic isotopes, Earth Planet. Sci. Lett., 209, 113–130, 2003.

    Article  Google Scholar 

  38. Stuiver, M. and P. J. Reimer, Extended 14C data base and revised Calib 3.0 14C age calibration program, Radiocarbon, 35, 215–230, 1993.

    Google Scholar 

  39. Tauxe, L., Sedimentary records of relative paleointensities of the geomagnetic field: theory and practice, Rev. Geophys., 31, 319–354, 1993.

    Article  Google Scholar 

  40. Tauxe, L. and G. Wu, Normalised remanence in sediments of the western equatorial Pacific: Relatively intensity of the geomagnetic field?, J. Geophys. Res., 95, 12,337–12,350, 1990.

    Article  Google Scholar 

  41. Tric, E., J. P. Valet, P. Tucholka, M. Paterne, L. LaBeyric, F. Guichard, L. Tauxe, and M. Fontugne, Paleointensity of the geomagnetic field during the last 80,000 years, J. Geophys. Res., 97, 9,337–9,351, 1992.

    Article  Google Scholar 

  42. Valet, J. P., Time variations in geomagnetic intensity, Rev. Geophys., 41, 4,1–4,44, 2003.

    Article  Google Scholar 

  43. Yang, S., H. Odah, and J. Shaw, Variations in the geomagnetic dipole moment over the last 12,000 years, Geophys. J. Int., 140, 158–162, 2000.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. S. G. Gogorza.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gogorza, C.S.G., Irurzun, M.A., Chaparro, M.A.E. et al. Relative paleointensity of the geomagnetic field over the last 21,000 years BP from sediment cores, Lake El Trébol (Patagonia, Argentina). Earth Planet Sp 58, 1323–1332 (2006). https://doi.org/10.1186/BF03352628

Download citation

Key words

  • Relative paleointensity
  • sediment cores
  • South America
  • Lake El Trébol
  • coherence