Skip to main content

Early cretaceous absolute geomagnetic paleointensities from Córdoba Province (Argentina)

Abstract

We present here new paleointensity and geochronology results from Early Cretaceous volcanic rocks of Sierra Chica de Cordoba (Argentina). The new K-Ar isotopic ages of 5 samples range from 136 to 122 Ma. Twenty five samples from 7 individual flows yielded acceptable paleointensity estimates. The mean paleointensity values per flow are ranging from 53.0 ± 1.9 to 25.4 ± 2.6 μT and the corresponding Virtual Dipole Moments (VDMs) are ranging from 9.3±1.3 to 4.6±0.5 (1022 Am2). This corresponds to the mean value of 7.3±1.7×1022 Am2, which is compatible to the present geomagnetic axial dipole. Currently available selected paleointensity data from 80 to 130 Ma suggest that geomagnetic field strength frequently fluctuated before and during the Cretaceous Normal Superchron while the magnetic polarity maintained stable. The mean paleointensities derived from Córdoba lavas agree remarkably well with those obtained from the Paraná Magmatic Province (133–132 Ma). This reinforces the hypothesis about the unreliability of ‘Mesozoic Dipole Low’. Key words: Paleointensity, rock-magnetism, Early Cretaceous, South America.

References

  1. Barton, C. E., R. Baldwin, D. Barraclough, S. Bushati, M. Chiappini, Y. Cohen, R. Coleman, G. Hulot, V. Kotze, V. Golovkov, A. Jackson, R. Langel, F. Lowes, D. McKnight, S. Macsmillan, L. Newitt, N. Peddie, J. Quinn, and T. Sabaka, International geomagnetic reference field, 1995 revision, Geophys. J. Int., 125, 318–321, 1996.

    Article  Google Scholar 

  2. Buddington, A. F. and D. H. Linsley, Iron-titanium oxides minerals and synthetic equivalents, J. Petrol., 5, 310–357, 1964.

    Article  Google Scholar 

  3. Cande, S. C. and D. V. Kent, Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic, J. Geophys. Res., 100, 6093–6095, 1995.

    Article  Google Scholar 

  4. Coe, R., S. Grommé, and E. A. Mankinen, Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low, J. Geophys. Res., 83, 1740–1756, 1978.

    Article  Google Scholar 

  5. Cottrell, R. D. and J. A. Tarduno, Geomagnetic paleointensity derived from single plagioclase crystals, Earth Planet. Sci. Lett., 169(1–2), 1999.

    Google Scholar 

  6. Cottrell, R. D. and J. A. Tarduno, In search of high-fidelity geomagnetic paleointensities: A comparison of single plagioclase crystal and whole rock Thellier-Thellier analyses, J. Geophys. Res., 105, 23579–23584, 2000.

    Article  Google Scholar 

  7. Day, R., M. Fuller, and V. A. Schmidt, Hysteresis properties of titanomagnetites: Grain-size and compositional dependence, Phys. Earth Planet. Int., 13, 260–267, 1977.

    Article  Google Scholar 

  8. Dunlop, D. and Ö. Özdemir, Rock-Magnetism, Fundamentals and Frontiers, Cambrige University Press, 573 pp., 1997.

    Google Scholar 

  9. Dunlop, D. and Ö. Özdemir, Theory and application of the Day Plot, Theoretical curves and tests using titanomagnetite data, J. Geophys. Res., 107, doi: 1029/2001JB000486, 2002.

  10. Geuna, S. E. and H. Vizán, New Early Cretaceous palaeomagnetic pole from Córdoba Province (Argentina): revision of previous studies and implications for the South American database, Geophys. J. Int., 135, 1085–1100, 1998.

    Article  Google Scholar 

  11. Goguitchaichvili, A. and M. Prévot, Magnetism of oriented single crystals of hemo-ilmenite showing self-reversal of thermoremanent magnetization, J. Geophys. Res., 105, 2761–2781, 2000.

    Article  Google Scholar 

  12. Goguitchaichvili, A., M. Prévot, J. Thompson, and N. Roberts, An attempt to determine the absolute geomagnetic field intensity in Southwestern Iceland during the Gauss-Matuyama reversal, Phys. Earth Planet. Int., 115, 53–66, 1999.

    Article  Google Scholar 

  13. Goguitchaichvili, A., L. Alva-Valdivia, J. Urrutia-Fucugauchi, J. Morales, and O. Ferreira-Lopes, On the Reliability of Mesozoic Dipole Low: New Absolute Paleointensity Results from Parana Flood Basalts (Brazil), Geophys. Res. Lett., 29(13), 1655, 10.1029/2002GL015242, 2002.

    Article  Google Scholar 

  14. Gordillo, C. E. and A. Lencinas, Geología y petrología del extremo norte de la Sierra de Los Cóndores, Córdoba, Bol. Academia Nacional de Ciencias, Córdoba, 46, 73–108, 1967.

    Google Scholar 

  15. Haggerty, S. E., Oxidation of opaque mineral oxides in basalts, in Oxides Minerals, edited by D. Rumble, Mineral. Soc. Amer., Reviews in Mineralogy, vol. 3, 300 pp., 1976.

    Google Scholar 

  16. Haggerty, S. E., Oxide textures—A mini atlas, Rev. Mineral., 25, 12–219, 1991.

    Google Scholar 

  17. Hulot, G. and Y. Gallet, Do superchrons occur without any paleomagnetic warning?, Earth Planet. Sci. Lett., 210, 191–201, 2003.

    Article  Google Scholar 

  18. Kosterov, A. and M. Prévot, Possible mechanism causing failure of Thellier paleointensity experiments in some basalts, Geophys. J. Int., 134, 554–572, 1998.

    Article  Google Scholar 

  19. Larson, R. L. and P. Olson, Mantle plumes control magnetic reversal frequency, Earth Planet. Sci. Lett., 107, 437–447, 1991.

    Article  Google Scholar 

  20. República Argentina, 1957–1987, Publicaciones especiales de la Asoc. Geol. Argentina, Ser. B, Didáctica y Complementaria, 19, 628 pp. Buenos Aires., 1990.

  21. McFadden, R. T. and R. T. Merrill, Fundamental transitions in the geodynamo as suggested by paleomagnetic data, Phys. Earth Planet. Int., 91, 253–260, 1995.

    Article  Google Scholar 

  22. McFadden, R. T. and R. T. Merrill, Evolution of geomagnetic reversal rate since 160 Ma: Is the process continuous?, J. Geophys. Res., 105, 28445–28460, 2000.

    Google Scholar 

  23. Pan, Y., M. Hill, R. Zhu, and J. Shaw, Further evidence for low intensity of the geomagnetic field during the early Cretaceous time: using the modified Shaw and microwave technique, Geophys. J. Int., 157, 553–564, 2004.

    Article  Google Scholar 

  24. Prévot, M., R. S. Mainkinen, S. Grommé, and A. Lecaille, High paleointensity of the geomagnetic field from thermomagnetic studies on rift valley pillow basalts from the middle Atlantic ridge, J. Geophys. Res., 88, 2316–2326, 1983.

    Article  Google Scholar 

  25. Prévot, M., E. A. Mankinen, R. S. Coe, and S. Grommé, The Steens Mountain (Oregon) geomagnetic polarity transition 2. Field intensity variations and discussion of reversal models, J. Geophys. Res., 90, 10417–10448, 1985.

    Article  Google Scholar 

  26. Prévot, M., M. E. Derder, M. McWilliams, and J. Thompson, Intensity of the Earth’s magnetic field: evidence for a Mesozoic dipole low, Earth Planet. Sci. Lett., 97, 129–139, 1990.

    Article  Google Scholar 

  27. Riisager, P., J. Riisager, X. Zhao, and R. S. Coe, Cretaceous geomagnetic paleointensities: Thellier experiments on Pillow lavas and submarine basaltic glass from the Ontong Java Plateau, Geochem. Geoph. Geosys., 4/18, doi: 10.1029/2003GC000611, 2004.

  28. Smirnov, A. V. and J. A. Tarduno, Thermochemical remanent magnetization in Precambrian rocks: Are we sure the geomagnetic field was weak?, J. Geophys. Res., 110, B06103, 2005.

    Google Scholar 

  29. Solé, J. and P. Enrique, X-ray fluorescence analysis for the determination Analytica Chimica Acta, 440, 199–205, 2001.

    Article  Google Scholar 

  30. Steiger, R. H. and E. Jäger, Subcomission on geochronology: Convention on the use of decay constants in geo- and cosmochronology, Earth Planet. Sci. Lett., 36, 359–362, 1977.

    Article  Google Scholar 

  31. Tanaka, H. and M. Kono, Paleointensities from a Cretaceous basalt platform in Inner Mongolia, northeastern China, Phys. Earth Planet. Int., 133, 147–157, 2002.

    Article  Google Scholar 

  32. Tarduno, J. A., R. D. Cottrell, and A. V. Smirnov, High geomagnetic intensity during the Mid-Cretaceous from Thellier analyses of single plagioclase crystals, Science, 291, 1779–1783, 2001.

    Article  Google Scholar 

  33. Tarduno, J. A., R. D. Cottrell, and A. V. Smirnov, The Cretaceous superchron geodynamo: observations near the tangent cylinder, PNAS, 99, 14020–14025, 2002.

    Article  Google Scholar 

  34. Tauxe, L. and H. Staudigel, Strength of the geomagnetic field in the Cretaceous Normal Superchron: New data fron submarine basaltic glass of the Trodoos Ophiolite, Geochem. Geoph. Geosys., 5/22, doi:10.1029/ 2003GC000635, 2004.

  35. Tauxe, L., T. A. T. Mullender, and T. Pick, Pot-bellies, wasp-waists and superparamagnetism in magnetic hysteresis, J. Geophys. Res., 95, 12337–12350, 1996.

    Article  Google Scholar 

  36. Tauxe, L., Bertram, H. Neal, and Ch. Severino, Physical intrepretation of hysteresis loops: Micromagnetic modeling of fine particle magnetite, Geochem. Geophys. Geosyst., 3(10), 1055, doi:10.1029/ 2001GC000241, 2002.

    Article  Google Scholar 

  37. Thellier, E. and O. Thellier, Recherches géomagnetiques sur les coulees volcaniques d’Auverne, Ann. Geophys., 1, 37–52, 1944.

    Google Scholar 

  38. Thellier, E. and O. Thellier, Sur l’sintensité du champ magnétique terrestre dans le passé historique et géologique, Ann. Géophysique, 15, 285–376, 1959.

    Google Scholar 

  39. Zhao, X., P. Riisager, J. Riisager, U. Draeger, R. S. Coe, and Z. Zheng, New Palaeointensity results from Cretaceous basalt of Inner Mongolia, China, Phys. Earth Planet. Int., 141, 131–140, 2004.

    Article  Google Scholar 

  40. Zhu, R., K. Hoffman, Y. Pan, R. Shi, and L. Daming, Evidence for weak geomagnetic intensity prior to the Cretaceous normal subchron, Phys. Earth Planet. Int., 136, 187–199, 2003.

    Article  Google Scholar 

  41. Zhu, R., L. Ching-Hua, R. Shi, G. Shi, Y. Pan, and J. Shao, Paleointensities determined from the middle Cretaceous basalt in Liaoning Province, northeastern China, Phys. Earth Planet. Int., 142, 49–59, 2004a.

    Article  Google Scholar 

  42. Zhu, R., L. Ching-Hua, R. Shi, G. Shi, Y. Pan, G. Shi, and J. Shao, Is there a precursor to the Cretaceous normal subchron? New paleointensity and age determination from Liaoning province, northeastern China, Phys. Earth Planet. Int., 147, 117–126, 2004b.

    Article  Google Scholar 

  43. Zhu, R., K. Hoffman, S. Nomade, P. Renne, R. Shi, G. Shi, Y. Pan, and G. Shi, Geomagnetic paleointensity and direct age determination of the ISEA (M0r?) chron, Earth Planet. Sci. Lett., 217, 285–295, 2004c.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Avto Goguitchaichvili.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruiz, R.C., Goguitchaichvili, A., Geuna, S.E. et al. Early cretaceous absolute geomagnetic paleointensities from Córdoba Province (Argentina). Earth Planet Sp 58, 1333–1339 (2006). https://doi.org/10.1186/BF03352629

Download citation

Key words

  • Paleointensity
  • rock-magnetism
  • Early Cretaceous
  • South America