Skip to main content

Cooling rate corrected paleointensities from the Xitle lava flow: Evaluation of within-site scatter for single spot-reading cooling units

Abstract

The historic Xitle lava, which covers a great part of southern Mexico City, is one of the most studied (magnetically) volcanic unit worldwide. Studies include detailed paleomagnetic and paleointensity investigations, which have documented an enigmatic within-flow variation of absolute paleointensity first recognized in the decade of 1960s. However, attempts to find possible explanations in terms of physical/magnetic parameters or geomagnetic effects have been unsatisfactory. As an effort to understand the over- and underestimating of geomagnetic paleointensity (PI) within the Xitle lava flow, we investigated the relation of the cooling rate upon the acquisition of thermoremanent magnetization (TRM). Contrary to archaeomagnetic investigations, most paleointensity experiments on volcanic rocks do not consider cooling rate effects in a systematic manner. Our results show that the scatter and overestimation of PI values obtained on the single Xitle lava flow are drastically reduced when using the cooling rate correction to raw selected data. The Thellier method combined with cooling rate experiments provide a higher precision compared to conventional Thellier and microwave techniques. The cooling rate effects upon acquisition of TRM in volcanic rocks seem to be as critical as in archaeomagnetic investigations.

References

  1. Bowles, J., J. Gee, D. Kent, E. Bergmanis, and J. Sinton, Cooling rate effects on paleointensity estimates in submarine basaltic glass and implications for dating young flows, Geochem. Geophys. Geosyst., 6, Q07002, 2005.

    Article  Google Scholar 

  2. Bohnel, H., J. Morales, C. Caballero, L. Alva, G. McIntosh, S. Gonzales, and G. J. Sherwood, Variation of Rock Magnetic Parameters and Paleointensities over a Single Holocene Lava Flow, J. Geomag. Geoelectr., 49, 523–542, 1997.

    Article  Google Scholar 

  3. Böhnel, H., A. J. Biggin, D. Walton, J. Shaw, and J. A. Share, Microwave paleointensities from a recent Mexican lava flow, baked sediments and reheated pottery, Earth Planetary Sci. Lett., 214, 221–236, 2003.

    Article  Google Scholar 

  4. Calvo, M., M. Prévot, M. Perrin, and J. Riisager, Investigating the reasons for the failure of paleointensity experiments: A study on historical lava flows from Mt. Etna (Italy), Geophys. J. Int., 149, 44–63, 2002.

    Article  Google Scholar 

  5. Carlut, J. and D. V. Kent, Grain-size-dependent paleointensity results from very recent mid-oceanic ridge basalts, J. Geophys. Res., 107(B3), 10.1029/2001JB00439, 2002.

    Google Scholar 

  6. Coe, R., Paleointensity of the Earth’s magnetic field determined from Tertiary and Quaternary rocks, J. Geophys. Res., 72(12), 3247–3262, 1967.

    Article  Google Scholar 

  7. Coe, R., S. Grommé, and E. A. Mankinen, Geomagnetic paleointensity from radiocarbon-dated flows on Hawaii and the question of the Pacific nondipole low, J. Geophys. Res., 83, 1740–1756, 1978.

    Article  Google Scholar 

  8. Coe, R., L. Hongre, and G. Glatzmaier, An examination of simulated geomagnetic reversals from a plaeomagnetic perspective, Phil. Trnas. R. Soc. Lond. A, 358, 1141–11710, 2004.

    Article  Google Scholar 

  9. Chauvin, A., Y. Garcia., Ph. Lanos, and F. Laubenheimer, Paleointensity of the geomagnetic field recovered on archaeomagnetic sites from France, Phys. Earth Planet. Int., 120, 111–136, 2000.

    Article  Google Scholar 

  10. Chauvin, A., P. Roperch, and S. Levi, Reliability of geomagnetic paleointensity data: the effects of the NRM fraction and concave-up behavior on paleointensity determinations by the Thellier method, Phys. Earth Planet Int., 150, 265–286, 2005.

    Article  Google Scholar 

  11. Delgado, H., R. Molinero, P. Cervantes, J. Nieto-Obregón, R. Lozano-Santa Cruz, H. L. Macias-Gonzáles, C. Mendoza-Rosales, and G. Silva-Romo, Geology of the Xitle volcano in southern Mexico-City—A 2000 years-old monogenetic volcano in an urban area, Rev. Mex. Ciencias Geol., 15(2), 115–131, 1998.

    Google Scholar 

  12. Dunlop, D. and Ö. Özdemir, Rock Magnetism, Fundamentals and Frontiers, Cambrige University Press, 573 pp., 1997.

    Google Scholar 

  13. Hill, M. and J. Shaw, Magnetic field intensity study of the 1960 Kilauea lava flow, Hawaii, using the microwave paleointensity technique, Geophys. J. Int., 142, 487–504, 2000.

    Article  Google Scholar 

  14. Kosterov, A. and M. Prevot, Possible mechanism causing failure of Thellier paleointensity experiments in some basalts, Geophys. J. Inter., 134, 554–572, 1998.

    Article  Google Scholar 

  15. Le Goff, M. and Y. Gallet, A new three-axis vibrating sample magnetometer for continuous high-temperature magnetization measurements: applications to paleo- and archeo-intensity determinations, Earth Planetary Sci. Lett., 229, 31–43, 2004.

    Article  Google Scholar 

  16. Morales, J., A. Goguitchaichvili, and J. Urrutia-Fucugauchi, A rockmagnetic and paleointensity study of some Mexican volcanic lava flows during the Latest Pleistocene to Holocene, Earth Planets Space, 53, 893–902, 2001.

    Article  Google Scholar 

  17. Morales, J., A. Goguitchaichvili, and J. Urrutia-Fucugauchi, An experimental evaluation of Shaw’s paleointensity method and its modifications using Late Quaternary basalts, Phys. Earth Planet Int., 138, 1–10, 2003.

    Article  Google Scholar 

  18. Nagata, T., Y Arai, and K. Momose, Secular variation of the geomagnetic total force during the last 5000 years, J. Geophys. Res., 68, 5277–5281, 1963.

    Article  Google Scholar 

  19. Perrin, M., Paleointensity determination, magnetic domain structure, and selection criteria, J. Geophys. Res., 103(B12), 30591–30600, 1998.

    Article  Google Scholar 

  20. Pick, T. and L. Tauxe, Holocene Paleointensities: Thellier Experiments on Submarine Basaltic Glass From the East Pacific Rise, J. Geophys. Res., 98(B10), 17949–17964, 1993.

    Article  Google Scholar 

  21. Thellier, E. and O. Thellier, Recherches géomagnetiques sur les coulees volcaniques d’Auvergne, Ann. Geophys., 1, 37–52, 1944.

    Google Scholar 

  22. Thellier, E. and O. Thellier, Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique, Ann. Géophysique., 15, 285–376, 1959.

    Google Scholar 

  23. Urrutia-Fucugauchi, J., L. M. Alva-Valdivia, A. Goguitchaichvili, M. L. Rivas, and J. Morales, Paleomagnetic, rock-magnetic and microscopy studies of historic lava flows from the Paricutin volcano, Mexico: implications for the deflection of paleomagnetic directions, Geophys. J. Int., 156, 431–442, 2004.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juan Morales.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morales, J., Alva-Valdivia, L.M., Goguitchaichvili, A. et al. Cooling rate corrected paleointensities from the Xitle lava flow: Evaluation of within-site scatter for single spot-reading cooling units. Earth Planet Sp 58, 1341–1347 (2006). https://doi.org/10.1186/BF03352630

Download citation

Key words

  • Paleointensity
  • Thellier method
  • cooling rate effects
  • rock magnetism
  • Central Mexico