Skip to main content

Low-latitude paleosecular variation and the time-averaged field during the late Pliocene and Quaternary—Paleomagnetic study of the Michoacan-Guanajuato volcanic field, Central Mexico

Abstract

We report paleomagnetic, rock magnetic, and paleointensity studies for 24 volcanic lava flows from the Michoacan-Guanajuato volcanic field (MGVF), erupted between 2.27 Ma to present according to available radiometric ages and historic records. The MGVF located in the central-western sector of the Plio-Quaternary Trans-Mexican volcanic belt is mainly composed by cinder cones and shield volcanoes. Rock magnetic experiments show remanence is carried in most cases by Ti-poor titanomagnetites, resulting from oxy-exsolution of original titanomagnetites during flow cooling. Unblocking temperature spectra and high coercivities point to “small” pseudo-single domain grains for the titanomagnetites. Single component, linear vector plots are obtained after alternating field and thermal demagnetization. Seven flows yield reverse polarity magnetization while sixteen flows are normally magnetized. The overall mean paleodirection obtained (with 14 flows normal and 6 flows reverse) is I=28.4°, D=357.9°, k=21, α95=7.3°, with a paleomagnetic pole position of Plat=85.7°, Plong= 104.5°, K=27, A95=6.4°. The paleodirection is undistinguishable from expected Plio-Quaternary paleodirections derived from reference poles for the North American polar wander curve, and previously reported paleodirections for central Mexico. Paleointensity experiments give high quality results for only twelve samples from two flows with mean values of 7.3 and 8.1 × 1022 Am2, which are close to present geomagnetic field intensity. The combination of new MGVF directional results with currently available paleomagnetic data from central Mexico yield angular dispersion estimates of SF = 15.4 with SU = 19.6 and SL = 12.7, which are in agreement with the latitude-dependent PSV model of McFadden et al. (1988, 1991) for the last 5 Ma, and show no significant inclination anomaly.

References

  1. Alva-Valdivia, L., A. Goguitchaichvili, J. Urrutia-Fucugauchi, and J. Morales, Further constraints for the Pliocene geomagnetic field strength: New results from the Los Tuxtla volcanic field (Mexico), Earth Planets Space, 53, 873–881, 2001.

    Article  Google Scholar 

  2. Ban, M., T. Hasenaka, H. Delgado-Granados, and N. Takaoka, K-Ar ages of lavas from shield volcanoes in the Michoacan-Guanajuato volcanic field, Mexico, Geofisica International, 31, 467–473, 1992.

    Google Scholar 

  3. Besse J. and V. Courtillot, Apparent true polar wander and the geometry of the geomagnetic field over the last 200 Ma., J. Geophys. Res., 107, 2300, doi:10.1029/2000JB000050, 2002.

    Article  Google Scholar 

  4. Bohnel, H. and R. Molina-Garza, Secular variation in Mexico during the last 40,000 years, Phys. Earth Planet. Inter., 133, 99–109, 2002.

    Article  Google Scholar 

  5. Bohnel, H., J. Urrutia-Fucugauchi, and E. Herrero-Bervera, Paleomagnetic data from central Mexico and their use for paleosecular variation studies, Phys. Earth Planet. Inter., 64, 224–236, 1990.

    Article  Google Scholar 

  6. Campos-Enriquez, J. J., J. O. Campos-Enriquez, and J. Urrutia-Fucugauchi, Variación secular reciente y cartas de los elementos del campo geomagnético en Mexico, Geofisica Internacional, 30, 107–116, 1991.

    Google Scholar 

  7. Cande, S. C. and D. V. Kent, Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic, J. Geophys. Res., 100, 6093–6095, 1995.

    Article  Google Scholar 

  8. Coe, R., The determination of paleo intensities of the Earth’s field with emphasis on mechanism which could cause non-ideal behavior in Thellier’s method, J. Geomagn. Geolectr., 19, 157–179, 1967.

    Article  Google Scholar 

  9. Coe, R., S. Gromme, and E. A. Mankinen, Geomagnetic paleointensity from radiocarbon-dated lava flows on Hawaii and the question of the Pacific non-dipole Low, J. Geophys. Res., 83, 1740–1756, 1978.

    Article  Google Scholar 

  10. Conte, G., J. Urrutia-Fucugauchi, A. Goguitchaichvili, A. M. Soler-Arechalde, O. Morton-Bermea, and A. Incoronato, Paleomagnetic study of lavas from the Popocatepetl volcanic region, Central Mexico, International Geology Review, 46, 210–225, 2004.

    Article  Google Scholar 

  11. Cox, A., Confidence limits for the precision parameter k, Geophys. J. R. astr. Soc., 17, 545–549, 1969.

    Article  Google Scholar 

  12. Day, R., M. Fuller, and V. A. Schmidt, Hysteresis properties of titanomag-netites: Grain size and compositional dependence, Phys. Earth. Planet. Inter., 13, 260–267, 1977.

    Article  Google Scholar 

  13. Doell, R. and A. Cox, Pacific geomagnetic secular variation, Science, 71, 248–254, 1971.

    Article  Google Scholar 

  14. Doell, R. and A. Cox, The Pacific geomagnetic secular variation anomaly and the question of lateral uniformity in the lower mantle, in The Nature of the Solid Earth, edited by E. C. Robertson, McGraw-Hill, New York, pp. 245–284, 1972.

    Google Scholar 

  15. Delgado-Granados, H., J. Urrutia-Fucugauchi, T. Hasenaka, and M. Ban, Southward volcanic migration in the western Trans-Mexican Volcanic Belt during the last 2 Ma, Geofis. Int., 34, 341–352, 1995.

    Google Scholar 

  16. Dunlop, D. J., Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1: Theoretical curves and tests using titanomagnetite data, J.Geophys. Res., 107(B3), 10.1029/2001JB000486, 2002.

  17. Dunlop, D. J. and O. Ozdemir, Rock-Magnetism Fundamentals and Frontiers, Cambridge, UK, Cambridge University Press, pp. 573, 1997.

    Google Scholar 

  18. Elmaleh, A., J.-P Valet, and E. Herrero-Bervera, A map of the Pacific geomagnetic anomaly during the Brunhes chron, Earth Planet. Sci. Lett., 193, 315–332, 2001.

    Article  Google Scholar 

  19. Fisher, R. A., Dispersion on the sphere, Proc. R. Soc. Lond. Ser., A217, 295–305, 1953.

    Article  Google Scholar 

  20. Goguitchaichvili, A., M. Prevot, and P. Camps, No evidence for strong fields during R3-N3 Icelandic geomagnetic reversals, Earth Planet. Sci. Lett., 167, 15–34, 1999.

    Article  Google Scholar 

  21. Goguitchaichvili, A., A. Chauvin, P. Roperch, M. Prevot, M. Vergara, and H. Moreno, Paleomagnetism of the Miocene Farellones Formation in Chile, Geophys. J. Int., 140, 357–374, 2000.

    Article  Google Scholar 

  22. Goguitchaichvili, A., P. Camps, and J. Urrutia-Fucugauchi, On the features of the geodynamo following reversals and excursions: by absolute geomagnetic intensity data, Phys. Earth Planet. Inter., 124, 81–93, 2001.

    Article  Google Scholar 

  23. Goguitchaichvili, A., L. Alva-Valdivia, J. Rosas-Elguera, J. Urrutia-Fucugauchi, J. Gonzalez, J. Morales, and J. Sole, An integrated paleomagnetic study of Rio Grande de Santiago volcanic succession (Trans-Mexican volcanic belt): revisited, Phys. Earth Planet. Inter., 130, 175–194, 2002.

    Article  Google Scholar 

  24. Gonzalez, S., G. Sherwood, H. Bohnel, and E. Schnepp, Paleosecular variation in Central Mexico over last 30,000 years: the record from lavas, Geophys. J. Int., 130, 201–219, 1997.

    Article  Google Scholar 

  25. Hasenaka, T., Size, distribution, and magma output rate for shield volcanoes of the Michoacan-Guanajuato volcanic field, Central Mexico, J. Volcanol. Geotherm. Res., 63, 13–31, 1994.

    Article  Google Scholar 

  26. Hasenaka, T. and I. S. E. Carmichael, A compilation of location, size, and geomorphological parameters of volcanoes of the Michoacan-Guanajuato volcanic field, central Mexico, Geofisica Internacional, 24(4), 577–607, 1985.

    Google Scholar 

  27. Hasenaka, T. and I. S. E. Carmichael, The cinder cones of Michoacan-Guanajuato, central Mexico: petrology and chemistry, J. Petrol., 28, 241–269, 1987.

    Article  Google Scholar 

  28. Hasenaka, T., M. Ban, and H. Delgado-Granados, Contrasting volcanism in the Michoacan-Guanajuato Volcanic Field, central México: Shield volcanoes vs. cinder cones, Geofisica Internacional, 33, 125–138, 1994.

    Google Scholar 

  29. Herrero-Bervera, E., J. Urrutia-Fucugauchi, A. Martin del Pozzo, H. Bohnel, and J. Guerrero, Normal amplitude Brunhes paleosecular variation at low-latitudes: A paleomagnetic record from the Trans-Mexican Volcanic Belt, Geophys. Res. Lett., 13, 1442–1445, 1986.

    Article  Google Scholar 

  30. Johnson, C. L and C. G. Constable, Persistently anomalous Pacific geomagnetic fields, Geophys. Res. Lett., 25, 1011–1014, 1998.

    Article  Google Scholar 

  31. Juarez, M. T., L. Tauxe, J. S. Gee, and T. Pick, The intensity of the Earth’s magnetic field over the past 160 million years, Nature, 394, 878–881, 1998.

    Article  Google Scholar 

  32. Kirschvink, J. L., The least-squares line and plane and the analysis of palaeomagnetic data, Geophys. J. R. Astr. Soc., 62, 699–718, 1980.

    Article  Google Scholar 

  33. Kosterov, A. and M. Prévot, Possible mechanisms causing failure of Thellier paleointensity experiments: results of rock-magnetic study of the Lesotho basalt, Southern Africa, Geophys. J. Int., 134, 554–572, 1998.

    Article  Google Scholar 

  34. Love, J. J., Palaeomagnetic secular variation as a function of intensity, Phil. Trans R. Soc., 358, 1191–1223, 2000.

    Article  Google Scholar 

  35. Mankinen, E. A. and D. E. Champion, Latest Pleistocene and Holocene geomagnetic intensity on Hawaii, J. Geophys. Res., 262, 412–423, 1993.

    Google Scholar 

  36. McElhinny, M. W. and P. L. McFadden, Paleosecular variation over the past 5 Myr based on a new generalized database, Geophys. J. Int., 131, 240–252, 1997.

    Article  Google Scholar 

  37. McElhinny, M. W., P. L. McFadden, and R. Merrill, The myth of the Pacific dipole window, Earth Planet Sci. Lett., 143, 13–22, 1996.

    Article  Google Scholar 

  38. McFadden, P. L., Determination of the angle in a Fisher distribution which will be exceeded with a given probability, Geophys. J. R. astr. Soc., 60, 391–396, 1980.

    Article  Google Scholar 

  39. McFadden, P., T. Merrill, and W. McElhinny, Dipole/quadrupole family modeling of paleosecular variation, J. Geophys. Res., 93, 11583–11588, 1988.

    Article  Google Scholar 

  40. McFadden P. L., R. Merrill, M. W. McEllhinny, and S. Lee, Reversals of the Earth’s magnetic field and temporal variations of the dynamo families, J. Geophys. Res., 96, 3923–3933, 1991.

    Article  Google Scholar 

  41. McWilliams, M., R. Holcomb, and D. Champion, Geomagnetic secular variation from 14C dated lava flows on Hawaii and the question of the Pacific non-dipole low, Phil. Trans. R. Soc. Lond., A306, 211–222, 1982.

    Article  Google Scholar 

  42. Miki, M., H. Inokuchi, S. Yamaguchi, J. Matsuda, K. Nagao, N. Isezaki, and K. Yasakawa, Geomagnetic paleosecular variation in Easter Island, the southeast Pacific, Phys. Earth. Planet. Int., 106, 93–101, 1998.

    Article  Google Scholar 

  43. Molnar, P. and L. R. Sykes, Tectonics of the Caribbean and Middle America regions from focal mechanisms and seismicity, G. S. A. Bulletin, 80, 1639–1684, 1969.

    Article  Google Scholar 

  44. Morales, J., A. Goguitchaichvili, and J. Urrutia-Fucugauchi, A rock-magnetic and paleointensity study of some Mexican volcanic lava flows during the Latest Pleistocene to the Holocene, Earth Planets Space, 53, 839–902, 2001.

    Article  Google Scholar 

  45. Morales, J., A. Goguitchaichvili, L. Alva-Valdiva, N. Gratton, J. Urrutia-Fucugauchi, J. Rosas-Elguera, and A. Soler-Arechalde, An attempt to determine the microwave paleointensity on historic Paricutin volcano lava flows, Central Mexico, Geofisica Internacional, 42(1), 95–100, 2003.

    Google Scholar 

  46. Nagata, T., R. M. Fisher, and K. Momose, Secular variation of the geomagnetic total force during the last 5000 years, J. Geophys. Res., 68, 5277–5281, 1963.

    Article  Google Scholar 

  47. Nixon, G. T., A. Demant, R. L. Armstrong, and J. E. Harakal, K-Ar and geologic data bearing on the age and evolution of the Trans-Mexican Volcanic Belt, Geofisica Internacional, 26, 109–158, 1987.

    Google Scholar 

  48. Prévot, M., R. S. Mankinen, S. Gromme, and A. Leccaille, High paleointensity of the geomagnetic field from thermomagnetic studies on rift valley pillow basalts from the middle Atlantic ridge, J. Geophys. Res., 88, 2316–2326, 1983.

    Article  Google Scholar 

  49. Riisager, J., M. Perrin, P. Riisager, and G. Ruffet, Paleomagnetism, paleointensity and geochronology of Miocene basalts and baked sediments from Velay Oriental, French Massif Central, J. Geophys. Res., 105, 883–896, 2000.

    Article  Google Scholar 

  50. Riisager, P., J. Riisager, N. Abrahamsen, and R. Waagstein, Thellier paleointensity experiments on Faroes flood basalts: Technical aspects and geomagnetic implications, Phys. Earth. Planet. Inter., 113, 91–100, 2002.

    Article  Google Scholar 

  51. Selkin, P. A. and L. Tauxe, Long-term variations in palaeointensity, Philos. Trans. R. Soc. London, A358, 1065–1088, 2000.

    Article  Google Scholar 

  52. Singer, B. S. and L. L. Brown, The Santa Rosa Event: 40Ar/39Ar and paleomagnetic results from the Valles rhyolite near Jaramillo Creek, Jemez Mountains, New Mexico, Earth Planet. Sci. Lett., 197, 51–64, 2002.

    Article  Google Scholar 

  53. Steele, K. W., Paleomagnetic constraints on the volcanic history of Iztac-cihuatl, Geofisica Internacional, 24, 159–167, 1985.

    Google Scholar 

  54. Tanaka, H. and M. Kono, Preliminary results and reliability studies on historical and radiocarbon dated Hawaiian lavas, J. Geomag. Geoelectr., 43, 375–388, 1991.

    Article  Google Scholar 

  55. Tauxe, L., Sedimentary records of relative paleointensities: Theory and Practice, Rev. Geophys., 31, 319–354, 1993.

    Article  Google Scholar 

  56. Tauxe, L., T. A. T. Mullender, and T. Pick, Pot-bellies, wasp-waists and superparamagnetismo in magnetic hysteresis, J. Geophys. Res., 95, 12337–12350, 1996.

    Article  Google Scholar 

  57. Thellier, E. and O. Thellier, Sur l’intensite de champ magnetique terrestre dans le passe historique et geologique, Ann. Geophys, 15, 285–376, 1959.

    Google Scholar 

  58. U.S.-Japan Paleomagnetic Cooperation Program in Micronesia, Paleosecular variation of lavas from the Marianas in the Western Pacific Ocean, J. Geomag. Geolectr., 27, 57–66, 1975.

    Article  Google Scholar 

  59. Urrutia-Fucugauchi, J., Constraints on Brunhes low-latitude paleosecular variation-Iztaccíhuatl stratovolcano, basin of Mexico, Geofisica Internacional, 34, 253–262, 1995.

    Google Scholar 

  60. Urrutia-Fucugauchi, J., Palaeomagnetic Study of the Xitle-Pedregal Flow, southern Basin of Mexico, Phys. Earth Planet Inter., 97, 177–196, 1996.

    Article  Google Scholar 

  61. Urrutia-Fucugauchi, J., Comments on A new method to determine paleosecular variation, Phys. Earth. Planet. Inter., 102, 295–300, 1997.

    Article  Google Scholar 

  62. Urrutia-Fucugauchi, J. and A. Martin del Pozzo, Implicaciones de los datos paleomagneticos sobre la edad de la Sierra de Chichinautzin, cuenca de Mexico, Geofisica Internacional, 32, 523–533, 1993.

    Google Scholar 

  63. Urrutia-Fucugauchi, J. and L. del Castillo, Un modelo del Eje Volcanico Mexicano, Bol. Soc. Geol. Mexicana, 38, 18–28, 1977.

    Google Scholar 

  64. Urrutia-Fucugauchi, J. and O. Campos-Enriquez, Geomagnetic secular variation in Central Mexico since 1923 AD and comparison with 1945–1990 IGRF models, J. Geomagn. Geoelectr., 45, 243–249, 1993.

    Article  Google Scholar 

  65. Urrutia-Fucugauchi, J., L. Alva-Valdivia, A. Goguitchaichvili, M. L. Rivas, and J. Morales, Palaeomagnetic, rock-magnetic and microscopy studies of historic lava flows from Paricutin volcano, Mexico: Implications for the deflection of palaeomagnetic measurements, Geophys. J. Int., 156, 431–442, 2004.

    Article  Google Scholar 

  66. Vandamme D., A new method to determine paleosecular variation, Phys. Earth. Planet. Inter., 85, 131–142, 1994.

    Article  Google Scholar 

  67. Wilson, R. L., Permanent aspects of the Earth’s non-dipole magnetic field over upper Tertiary times, Geophys. J. R. astr. Soc., 19, 417–437, 1970.

    Article  Google Scholar 

  68. Wilson, R. L. and M. W McElhinny, Investigation of the large scale palaeomagnetic field over the past 25 million years. Eastward shift of the Icelandic spreading ridge, Geophys. J. R. astr. Soc., 39, 570–586, 1974.

    Article  Google Scholar 

  69. Zijderveld, J. D. A., A. C. demagnetization of rocks: analysis of results, in Methods in Palaeomagnetism, edited by D. W Collinson, K. M. Creer, and S. K. Runcorn, Elsevier, Amsterdam, pp. 254–286, 1967.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Conte-Fasano.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Conte-Fasano, G., Urrutia-Fucugauchi, J., Goguitchaichvili, A. et al. Low-latitude paleosecular variation and the time-averaged field during the late Pliocene and Quaternary—Paleomagnetic study of the Michoacan-Guanajuato volcanic field, Central Mexico. Earth Planet Sp 58, 1359–1371 (2006). https://doi.org/10.1186/BF03352632

Download citation

Key words

  • Paleomagnetism
  • geomagnetic secular variation
  • paleointensity
  • Plio-Quaternary
  • Central Mexico