Skip to main content

Correlation between paleosol-soil magnetic signal and climate

Abstract

A comparison of the index of potential water storage (PWS) with the magnetic properties of soils in Russia and of Argentina and China paleosols suggests the existence of one or two climatic thresholds that affect the formation, preservation or depletion of ferrimagnetic minerals. Soils characterized by a positive PWS are wetted during an important part of the year, creating an appropriate environment that favors the depletion of ferrimagnetic minerals due to mainly reductive dissolution. Such soils are characterized by a depletion of detrital ferrimagnetic minerals, as observed in Argentinean soils and paleosols. On the other hand, a negative PWS prevents highly reducing conditions in the soil, and the detrital ferrimagnetic minerals are preserved. The environmental conditions of these soils allow the formation of (superparamagnetic) pedogenic minerals, together with the preservation of lithogenic minerals. These conditions produce a net magnetic enhancement of the soil, as observed in Russia and China. The second threshold in PWS could be at a positive value. Above this second threshold, the water content of the soil during practically the whole year could allow the formation of (superparamagnetic) pedogenic minerals. This threshold could explain differences in the magnetic enhancement or depletion of Argentina soils characterized by a positive PWS.

References

  1. Ameghino, F., Contribución al conocimiento de los mamíferos fósiles de la República Argentina, Academia Nacional de Ciencias, VI, 1–1027, Córdoba, 1889.

    Google Scholar 

  2. Ameghino, F., Las formaciones sedimentarias de la región litoral de Mar del Plata y Chapadmalal, An. Museo Nac. Histor. Nat., 10, 343–428, 1908.

    Google Scholar 

  3. Appelo, C. A. J. and D. Postma, Geochestry, Groundwater and Pollution, Balkema, Rotterdam, 1993.

    Google Scholar 

  4. Banerjee, S. K. and C. Hunt, Separation of local signals from the regional paleomonsoon record of the Chinese loess plateau. A rock-magnetic approach, Geophy. Res. Lett., 20, 843–846, 1993.

    Article  Google Scholar 

  5. Bloemendal, J. and X. Liu, Rock magnetism and geochemistry of two plio-pleistocene Chinese loess-paleosols sequences- implications for quantitative paleoprecipitation reconstruction, Paleogeograph. Paleoclimatol. Paleoecol., 226, 149–166, 2005.

    Article  Google Scholar 

  6. Canfield, D. E. and R. A. Berner, Dissolution and pyritization of magnetite in anoxic marine sediments, Geochim. Cosmochim. Acta, 51, 645–659, 1987.

    Article  Google Scholar 

  7. Claperton, C., Quaternary Geology and Geomorphology of South America, Elsevier, Amsterdam, 1993.

    Google Scholar 

  8. Dunne, T. and L. B. Leopold, Water in Environmental Planning, W. H. Freeman and Co., San Francisco, 1978.

    Google Scholar 

  9. Evans, M. E. and F. Heller, Environmental Magnetism. Principles and Applications of Enviromagnetics, Academic press, Elsevier Science, Amsterdam, 2003.

    Google Scholar 

  10. Fang, X.-M., J.-J. Li, S. K. Banerjee, M. Jackson, E. Oches, and R. van der Voo, Millennial-scale climatic change during the last interglacial period: superparamagnetic sediment proxy from paleosol S1, western Chinese Loess Plateau, Geophys. Res. Lett., 26, 2485–2488, 1999.

    Article  Google Scholar 

  11. Fidalgo, F., Provincia de Buenos Aires. Continental. CADINQUA, edited by M. Iriondo, El Holoceno en la Argentina, vol. 1, pp. 23–38, 1992.

    Google Scholar 

  12. Fidalgo, F., F. De Francesco, and R. Pascual, Geologia Superficial de la Llanura Bonaerense. In: Geologia de la Provincia de Buenos Aires, VI Congreso Geologico Argentino, Relatorio, Bahá Blanca, 103–138, 1975.

    Google Scholar 

  13. Fidalgo, F., J. C. Riggi, R. O. Gentile, H. A. Correa, and N. Porro, Los “Sedimentos Postpampeanos” continentales en el ámbito sur bonaerense, Rev. Asoc. Geol. Argentina, 46, 239–256, 1991.

    Google Scholar 

  14. Florindo, F., A. P. Roberts, and M. R. Palmer, Mangetite dissolution in sili-ceous sediments, Geochem. Geophys. Geosystems, 4, 2003.

  15. Freeze, R. A. and J. A. Cherry, Groundwater, Prentice-Hall, Englewood Cliffs, New Jersey, 1979.

    Google Scholar 

  16. Frenguelli, J., Observaciones geológicas en la región costanera Sur de la Provincia. de Buenos Aires, Univers. Nac. Litoral. Fac. Cienc. Educac., An. II, 1–145, 1928.

    Google Scholar 

  17. Frenguelli, J., El Platensey sus diatomeas. Museo de la Plata Rev. II (nueva ser.), Geol. 1 and 3 Paleontológica, 287–311 and 77–221, 1945.

    Google Scholar 

  18. Frenguelli, J., Rasgos generales de la morfología y geología de la provincia de Buenos Aires. Provincia de Buenos aires, Ministerio de Obras Públicas de la Provincia de Buenos Aires, Lab. Ensayos Materiales Invest. Tecnol. (LEMIT) Ser. II, 33, 1–72, 1950.

    Google Scholar 

  19. Frenguelli, J., Loess y limos pampeanos. Serie Técnica y didáctica No. 7 Ministerio de Educación de la Nación, Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo de La Plata, 1955.

    Google Scholar 

  20. Frenguelli, J., Neozoico. En Geografía de la República Argentina II (3), 1–218, GAEA, Soc. Argentina Estud. Geográf, Buenos Aires, 1957.

    Google Scholar 

  21. Han, J., H. Lu, N. Wu, and Z. Guo, Magnetic susceptibility of modern soils in China and climate conditions, Stud. Geophys. Geodet., 40, 262–275, 1996.

    Article  Google Scholar 

  22. Heller, F., X. Liu, T. S. Wu, and T. C. Xu, Magnetic susceptibility of loess in China, Earth Planet. Sci. Lett., 103, 301–310, 1991.

    Article  Google Scholar 

  23. Heller, F., C. D. Shen, J. Beer, X. M. Liu, T. S. Liu, and A. Bronger, Quantitative estimates and paleoclimatic implications of pedogenic ferromagnetic mineral formation in Chinese loess, Earth Planet. Sci. Lett., 114, 385–390, 1993.

    Article  Google Scholar 

  24. Liu, Q., S. Banerjee, M. J. Jackson, F. Chen, Y. Pan, and R. Zhu, Determining the climatic boundary between the Chinese loess and palaeosol: evidence from aeolian coarse-grained magnetite, Geophys. J. Int. Volcanol., 156, 267–274, 2004.

    Article  Google Scholar 

  25. Liu, X., J. Shaw, T. Liu, F. Heller, and B. Yuan, Magnetic mineralogy of Chinese Loess and its significance, Quaternary Research, 42, 162–165, 1992.

    Article  Google Scholar 

  26. Liu, X., T. Rolph, J. Bloemendal, J. Shaw, and T. S. Liu, Quantitative estimates of paleoprecipitation at Xinfeng, in the Loess Plateau of China, Paleogeograph. Paleoclimatol. Paleoecol., 13, 243–248, 1

    Article  Google Scholar 

  27. MacBride, J., Environmental Chemistry of Soils, Oxford University Press, Oxford, 1994.

    Google Scholar 

  28. Maher, B. A., Characterization of soils by mineral magnetic measurements, Phys. Earth Planet. Int., 42, 76–92, 1986.

    Article  Google Scholar 

  29. Maher, B., Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications, Palaeogeogr. Palaeoclimatol. Palaeoecol., 137, 25–54, 1998.

    Article  Google Scholar 

  30. Maher, B. and R. Taylor, Formation of ultrafine-grained magnetite in soils, Nature, 336, 368–379, 1988.

    Article  Google Scholar 

  31. Maher, B. and R. Thompson, Mineral magnetic record of the Chinese loess and paleosols, Geology, 19, 3–6, 1991.

    Article  Google Scholar 

  32. Maher, B. and R. Thompson, Pedogenesis and paleoclimate. Interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences, Geology, 22, 857–859, 1994.

    Article  Google Scholar 

  33. Maher, B. A. and R. Thompson, Paleorainfall reconstruction from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols, Quat. Res., 44, 383–391, 1995.

    Article  Google Scholar 

  34. Maher, B. A. and R. Thompson (eds.), Quaternary Climates, Environments and Magnetism, Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  35. Maher, B. A., A. Alekseev, and T. Alekseeva, Magnetic mineralogy of soils across the Russian Steppe: climatic dependence of pedogenic magnetite formation, Palaeogeograph. Palaeoclimatol. Palaeocol., 201, 321–341, 2003.

    Article  Google Scholar 

  36. Mullins, C. E., Magnetic susceptibility of the soil and its significance in soil sequence—a review, J. Soil Sci., 28, 223–246, 1977.

    Article  Google Scholar 

  37. Nicolli, H. B., A. Tineo, J. W. García, CM. Falcón, M. H. Merino, M. C. Etchechurry, M. S. Alonso, and O. R. Tófalo, The role of loess in groundwater at salí River Basin, Argentina, in Water-rock Interation, vol. 2, edited by R. W. Wanty and R. R. Seal II, 1591–1595, Balkema Publishers, Rotterdam, 2004.

    Google Scholar 

  38. Orgeira, M. J., A. M. Walther, C. A. Vásquez, I. Di Tommaso, S. Alonso, G. Sherwood, Yuang Hu, and J. F. A. Vilas, Mineral magnetic record of paleoclimate variation in loess and paleosol from the Buenos Aires formation (Buenos Aires, Argentina), J. South Am. Earth Sci., 11, 561–570, 1998.

    Article  Google Scholar 

  39. Orgeira, M. J., A. M. Walther, R. Tófalo, C. A. Vásquez, T. Berquó, C. Favier Dubois, and H. Bhonel, Environmental magnetism in fluvial and loessic Holocene sediments and paleosols from the Chacopampean Plain (Argentina), J. South Am. Earth Sci., 16, 259–274, 2003.

    Article  Google Scholar 

  40. Orgeira, M. J., F. X. Pereyra, C. Vásquez, E. Castañeda, and R. Compagnucci, Señal magnética en suelos actuales de la provincia de Buenos Aires, Argentina: su relacion con el clima, Rev. Espan. Geo-Temas, 6, 311–314, 2004.

    Google Scholar 

  41. Orgeira, M. J., F. X. Pereyra, C. Vásquez, E. Castañeda, and R. Compagnucci, Environmental magnetism in present soils, Buenos Aires province, Argentina, J. South Am. Earth Sci., 2006 (in press).

    Google Scholar 

  42. Parodi, L. J. and R. Parodi Bustos, Apuntes para la geología de la costa Atlántica de la provincia de Buenos Aires, con descripción de la Formación Malacara, An. Soc. Cientif. Argentina, 153, 139–156, 1952.

    Google Scholar 

  43. Pascual, R., E. Ortega Hinojosa, D. Gordar, and E. Tonni, Las edades del Cenozoico mamalífero de la Argentina con especial atencion a aquellos del territorio bonaerense, Provincia de Buenos Aires, Com. Invest. Cientif. An., 6, 165–193, 1965.

    Google Scholar 

  44. Stumm, W., Chemestry of the solid-water interface. Processes at the mineral-water and particle-water interface in natural systems, Wiley-Interscience, John Wiley and Sons, New York, 1992.

    Google Scholar 

  45. Teruggi, M. E., The nature and origin of the Argentinian loess, J. Sediment. Petrol., 27, 322–332, 1957.

    Google Scholar 

  46. Thornthwaite, C. W., An approach toward a rational classification of climate, Geograph. Rev., 38, 55–94, 1948.

    Article  Google Scholar 

  47. Vásquez, C. A., A. M. Walther, M. J. Orgeira, I. Di Tommaso, S. Alonso, and J. F. A. Vilas, Magnetic properties and environmental conditions: study of a paleosol of Chacopampean plain (Argentina), Quat. South Am. Antarctic Peninsula, 11, 195–206, 1998.

    Google Scholar 

  48. Walther, A. M., M. J. Orgeira, and H. F. Lippai, Magnetismo de rocas en sedimentos cenozoicos tardíos en San Antonio de Areco provincia de Buenos Aires, Rev. Asoc. Geolog. Argentina, 59, 433–442, 2004.

    Google Scholar 

  49. Zhou, L. P., F. Oldfield, A. G. Whintle, S. G. Robinson, and J. T. Wang, Partly pedogenic origin of magnetic variations in Chinese loess, Nature, 346, 737–739, 1990.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. J. Orgeira.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Orgeira, M.J., Compagnucci, R.H. Correlation between paleosol-soil magnetic signal and climate. Earth Planet Sp 58, 1373–1380 (2006). https://doi.org/10.1186/BF03352633

Download citation

Key words

  • Environmental magnetism
  • paleoclimate
  • Late Cenozoic
  • loess and paleosol sequences