Skip to main content

Rock magnetic study of fluvial Holocene soil from Buenos Aires province (Argentina)

Abstract

The magnetic characteristics of soils are widely used in environmental and paleoclimatic investigations for studying the several factors involved in the soil formation process. We propose here a new analytical tool that takes into account the variations in magnetic properties correlated with grain sizes and concentrations of ferrimagnetic minerals. This analytical tool is based on a mathematical model of well-established magnetic properties in samples of known grain sizes and was used in this study to determine changes in the grain size and concentration of ferrimagnetic minerals along a terminal Pleistocene/Holocene fluvial section located in the northeast of Buenos Aires province. These variations may reflect a humid period prevailing in the area and may be associated with climate changes that occurred in the Chaco-Pampean region during the Middle Holocene.

References

  1. Aguirre, M. L., Moluscos bentónicos marinos del Pleistoceno-Holoceno en el NE de la provincia de Buenos Aires. PhD thesis, Facultad de Ciencias Naturales y Museo, UNLP, La Plata, 1988.

    Google Scholar 

  2. Aguirre, M. L., Paleobiography of the Holocene molluscan fauna from Northeastern Buenos Aires Province. Argentina: its relation to coastal evolution and sea level changes, Paleogeograph. Palaeoclimatol. Palaecol., 102, 1–26, 1993.

    Article  Google Scholar 

  3. Banerjee, S. K., Experimental Methods of Rock Magnetism and Paleomagnetism, Advances in Geophysics 23, pp. 25–99, Academic Press, New York, 1981.

    Google Scholar 

  4. Banerjee, S. K. and C. P. Hunt, Separation of local signals from the regional paleomonsoon record of the Chinese Loess Plateau: A rock-magnetic approach, Geophys. Res. Lett., 20, 843, 1993.

    Article  Google Scholar 

  5. Carter-Stiglitz, B., M. Jackson, and B. Moskowitz, Low-temperature remanence in stable single domain magnetite, Geophys. Res. Lett., 29, 1029–1033, 2002.

    Article  Google Scholar 

  6. Castellanos, A., Cuenca Potamográfica del Río de la Plata, in Geografia de la República Argentina. Hidrografía. VII, 2° parte, pp. 1–159, Sociedad Argentina de Estudios Geográficos, Buenos Aires, 1975.

    Google Scholar 

  7. Cavallotto, J. L., G. Parker, and R. A. Violante, Relative sea level changes in the Río de la Plata during the Holocene. Late Quaternary coastal records of rapid changes: Application to present and future conditions. IInd Annual Meeting (IGCP 367). Abstracts, pp. 19–20, Antofagasta, 1995.

    Google Scholar 

  8. Cione, A. L. and E. P. Tonni, Bioestratigrafía y cronología del Cenozoico Superior de la región Pampeana, in Evolución Biológica y Climática de la región Pampeana durante los últimos cinco millones de años, edited by M. T. Alberdi, G. Leone and E. P. Tonni, pp. 49–74, Museo Nacional de Ciencias Natural—Consejo Superior de Investigaciones Científicas, Madrid, 1995.

    Google Scholar 

  9. Dawson, A. G., Ice Age Earth. Late Quaternary Geology and Climate, Routledge, New York, 1992.

    Google Scholar 

  10. Dearing, J. A., R. J. L. Dann, K. Hay, J. A. Lees, P. J. Loveland, B. A. Maher, and K. O’Grady, Frequency-dependent susceptibility measurements of environmental materials, Geophys. J. Int., 124, 228–240, 1996.

    Article  Google Scholar 

  11. Di Mico, M. M., Estudio de los depósitos pertenecientes al Pleistoceno tardío y Holoceno, presentes en la zona de Ezeiza, partido de Esteban Echeverría, provincia de Buenos Aires, Licentiate thesis, Facultad de Ciencias Exactas, Físicas y Naturales (UBA), 105 pp., Buenos Aires, 1990.

    Google Scholar 

  12. Dunlop, D., Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc). 1. Theoretical curves and tests using titanomagnetite data, J. Geophys. Res., 107, 10.1029. EPM 4-1, 2002.

  13. Dunlop, D. J. and Özdemir, Ö., Rock Magnetism. Fundamental and Frontiers, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  14. Evans, M. E., Magnetoclimatology of aeolian sediments, Geophys. J. Int., 144, 495–497, 2001.

    Article  Google Scholar 

  15. Frink, D. S., The Chemical variability of carbonized organic matter through time, Archaeol. East North Am., 20, 67–79, 1992.

    Google Scholar 

  16. Frink, D. S., The oxidizable carbon ration (OCR): A proposed solution to some of the problems encountered with radiocarbon data, North Am. Archael., 15, 17–29, 1994.

    Article  Google Scholar 

  17. Frink, D. S., Application of the Oxidizable Carbon Ratio Dating Procedure and its Implications for Pedogenic Research, in Pedological Perspectives in Archeological Research, pp. 95–106, Soil Science Society of America, Special Publication 44, Madison, 1995.

    Google Scholar 

  18. Halgedahl, S. and M. Fuller, The dependence of magnetic domain structure upon magnetization state with emphasis upon nucleation as a mechanism for pseudo-single-domain behavior, J. Geophys. Res., 88, 6505–6522, 1983.

    Article  Google Scholar 

  19. Hartstra, R. L., A comparative study of the ARM and Isr of some natural magnetites of MD and PSD grain size, Geophys. J. Roy. Astronom. Soc., 71, 497–518, 1982.

    Article  Google Scholar 

  20. Holliday, V. T., Archaeological geology of the Lubbock Lake site, Southern High Plains of Texas, Geol. Soc. Am. Bull., 96, 1483–1492, 1985.

    Article  Google Scholar 

  21. Hunt, P. C, S. K. Banerjee, J. Han, P. A. Solheid, E. Oches, W. Sun, and T. Liu, Rock-magnetic proxies of climate change in the loess-palaeosol sequences of the western Loess Plateau of China, Geophys. J. Int., 123, 232–244, 1995.

    Article  Google Scholar 

  22. Iriondo, M. H., La Pampa. Climas Cuaternarios en América del Sur, In: Argollo, J. and Mourguiart, P. (eds.), Quaternary Climates of South America, Project IGCP 281, ORSTON, Institute Français de Recherce Scientifique pour le Développment en Coopèration, La Paz, 1995.

    Google Scholar 

  23. Iriondo, M. H. and N. O. García, Climatic variation in the Argentine plains during the last 18,000 years, Paleogeograph. Palaeoclimatol. Palaecol., 101, 209–220, 1993.

    Article  Google Scholar 

  24. Isla, F. I., Holocene Sea-Level fluctuation in the southern hemisphere, Quat. Sci. Rev., 8, 359–368, 1989.

    Article  Google Scholar 

  25. Jordanova, D. and N. Jordanova, Magnetic characteristics of different soils types from Bulgaria, Stud. Geophys. Geod., 43, 303–308, 1999.

    Article  Google Scholar 

  26. Jordanova, D., E. Petrovsky, N. Jordanova, J. Evlogiev, and V. Butchvarova, Rock magnetic properties of recent soils from northeastern Bulgaria, Geophys. J. Int., 128, 474–488, 1997.

    Article  Google Scholar 

  27. Kraus, M. and T. M. Brown, Paleosoils and time resolution in alluvial stratigraphy, Paleosoil: Their Recognition and Interpretation, edited by W. P. Wright, pp. 180–207, Princeton University Press, Princeton, 1986.

    Google Scholar 

  28. MacBride, B., Environmental Chemistry of Soils, Oxford University Press, Oxford, 1994.

    Google Scholar 

  29. Maher, B. A. and R. Thompson, Quaternary Climates, Environments and Magnetism, Cambridge University Press, 1999.

    Google Scholar 

  30. Matasova, G., E. Petrovský, N. Jordanota, V. Zykina, and A. Kapitcka, Magnetic study of Late Pleistocene loess/palaeosol sections from Liberia: palaeoenvironmental implications, Geophys. J. Int., 147, 367–380, 2001.

    Article  Google Scholar 

  31. Nami, H. G., Preliminary Palaeomagnetic results of a terminal Pleistocene/Holocene record from northeastern Buenos Aires province (Argentina), Geofizika, 2004 (in press).

    Google Scholar 

  32. O’Donovan, J. B., D. Facey, and W. O’Reilly, The magnetization process in titanomagnetite (Fe2.4Ti0.6O4) in the 1–30 μ m particle size range, Geophys. J. Roy. Astronom. Soc., 87, 897–916, 1986.

    Article  Google Scholar 

  33. Orgeira, M. J., A. M. Walther, C. A. Vasquez, I. Di Tommaso, S. Alonso, G. Sherwood, Y Hu, and J. F A. Vilas, Mineral magnetic record of paleoclimate variation in loess and paleosol from the Buenos Aires formation (Buenos Aires, Argentina), J. South Am. Earth Sci., 11, 561–570, 1998.

    Article  Google Scholar 

  34. Orgeira, M. J., A. M. Walther, R. Tófalo, C. A. Vásquez, T. Berquó, C. Favier Dubois, and H. Bhonel, Environmental magnetism in paleosoils developed in fluvial and loessic holocene sediments from Chacopam-pean Plain (Argentina), J. South Am. Earth Sci., 16, 259–274, 2003.

    Article  Google Scholar 

  35. Petrovsky, E., A. Kapicka, N. Jordanova, and L. Boruvka, Magnetic properties of alluvial soils contaminated with lead, zinc and cadmium, J. Appl. Geophys., 48, 127–136, 2001.

    Article  Google Scholar 

  36. Pirazzolli, P., Sea-level Changes in the Last 20000 Years, John Wiley and Sons, Chichester, 1996.

    Google Scholar 

  37. Prado, J. L. and M. T. Alberdi, The mammalian record and climatic change over the last 30,000 years in the Pampean Region, Argentina, Quat. Int., 57/58, 165–174, 1999.

    Article  Google Scholar 

  38. Prieto, A. R., Late quaternary vegetational and climatic changes in the Pampa grassland of Argentina, Quat. Res., 45, 73–88, 1996.

    Article  Google Scholar 

  39. Reineck, H. E. and I. B. Singh, Depositional Sedimentary Environments, Springer, Berlin, Heidelberg, New York, 1975.

    Google Scholar 

  40. Russo, A, R. Ferello, and G. Chebli, Llanura Chaco Pampeana, Segundo Simposio de Geología Regional Argentina I, 139–183, Academia Nacional de Ciencias, Córdoba, 1979.

    Google Scholar 

  41. Scasso, R. A. and C. O. Limarino, Petrología y Diagénesis de Rocas Clásticas, Publicación especial no. 1, Asociación Argentina de Sedimentología, Buenos Aires, 1997.

    Google Scholar 

  42. Scharpenseel, H. W., Radiocarbon Dating of Soils-Problems, Troubles, Hopes, in Paleopedology. Origin, Nature and Dating, edited by D. H. Yaalon, pp. 77–88, International Society of Soil Scientists and Israel University Press, Jerusalem, 1971.

    Google Scholar 

  43. Stein, J. K., Organic matter in archeological contexts, in Soils in Archaeology, edited by V T. Holliday, pp. 193–216, Smithsonian Institution Press, Washington D.C., 1992.

    Google Scholar 

  44. Thompson, R., J. Bloemendal, J. A. Dearing, F. Oldfield, T. A. Rummery, J. C. Stober, and G. M. Turner, Environmental applications of magnetic measurements, Science, 207, 481–486, 2001.

    Article  Google Scholar 

  45. Tonni, E. P., A. L. Cione, and A. J. Figini, Predominance of arid climates indicated by mammals in the pampas of Argentina during the Late Pleistocene and Holocen, Palaeogeograph. Palaeoclimatol. Palaecol., 147, 257–281, 1999.

    Article  Google Scholar 

  46. Tonni, E. P., R. A. Huarte, J. E. Carbonari, and A. J. Figini, New radiocarbon chronology for the Guerrero Member of the Luján Formation (Buenos Aires, Argentina): paleoclimatic significance, Quat. Int., 109–110: 45–48, 2003.

    Article  Google Scholar 

  47. Turner, G. M., Environmental applications of magnetic measurements, Science, 207, 481–486, 2001.

    Google Scholar 

  48. Vasquez, C. A., H. G. Nami, and A. E. Rapalini, Magnetic sourcing of obsidians in Southern South America: some successes and doubts, J. Archeol. Sci., 28, 613–618, 2001.

    Article  Google Scholar 

  49. Verosub, K. L. and A. P. Roberts, Environmental magnetism: past, present and future, J. Geophys. Res., 100, 2175–2192, 1995.

    Article  Google Scholar 

  50. Weiler, N. E., Cambios relativos del nivel marino ocurridos durante el Pleistoceno Tardío-Holoceno en latitudes medias de la República Argentina, J. Arqueol. Interdiscipl., 143–176, CONICET-PREP, Buenos Aires, 1994.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Vasquez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vasquez, C.A., Nami, H.G. Rock magnetic study of fluvial Holocene soil from Buenos Aires province (Argentina). Earth Planet Sp 58, 1381–1387 (2006). https://doi.org/10.1186/BF03352634

Download citation

Key words

  • Rock magnetism
  • Magnetite
  • Titanomagnetite
  • Holocene
  • Buenos Aires