Skip to main content

GPS observations of post-storm TEC enhancements at low latitudes

Abstract

In a previous work (J. Geophys. Res., 110(A01308), 1–11, 2005), the authors developed an original approach to the processing of total electron content (TEC) data obtained by GPS signals from the Japan receiver network. This approach includes removing the diurnal and seasonal variation carried by 27-day medians and the solar rotation periodicity. The relative deviations of TEC from the median—from all measured locations at a given hour—were then approximated by a regression line along the main prolongation of the Japan islands, between latitudes 24° and 45°N. The two variables of the regression line, the average value at the center and the slope were obtained as a time series, and their behavior during geomagnetic storms in the period 2000–2002 were analyzed. One interesting result was the observed enhancement of TEC at the end of the recovery phase of the storms. The slope variations clearly showed that this enhancement started from the south and was interpreted as a poleward expansion of equatorial crest. In the present paper we further analyze this post-storm phenomenon, adding foF2 data from Japanese Kokubunji and Okinawa ionosondes. We also show the latitude extension of the poleward expansion by using lat/UT contour plots. The results confirm that most of the post-storm TEC enhancements are part of the equatorial crest region which extends poleward during nighttime. In some cases, the enhanced TEC structures develop by separating from the crest region. Daytime TEC enhancements were also observed. Their structures are not confined to the equatorial crests region, but occupy the whole latitude range considered in this study. TEC post-storm enhancements were generally found to be in agreement with foF2 variations.

References

  • Codrescu, M., T. J. Fuller-Rowell, and I. Kutiev, Modeling the F-layer During Specific Geomagnetic Storms, J. Geophys. Res., 102, 14315–14320, 1997.

    Article  Google Scholar 

  • Eccles, J. V., N. Maynard, and G. Wilson, Study of the evening plasma drift vortex in the low-latitude ionosphere using San Marco electric field measurements, J. Geophys. Res., 104, 28133–18145, 1999.

    Article  Google Scholar 

  • Fejer, B. G. and L. Scherliess, Empirical models of storm time equatorial zonal electric fields, J. Geophys. Res., 102, A11, 24047–24056, 1997.

    Article  Google Scholar 

  • Field, R. P. and H. Rishbet, The response of the ionospheric F2-layer to geomagnetic activity: an analysis of worldwide data, J. Atmos. Solar-Terr. Phys., 59(2), 163–180, 1997.

    Article  Google Scholar 

  • Heelis, R. A., Electrodynamics in the low and mid latitude ionosphere: a tutorial, J. Atmos. Solar Terr. Phys., 66, 825–838, 2004.

    Article  Google Scholar 

  • Kelley, M. C, M. N. Vlasov, J. C. Foster, and A. J. Coster, A quantitative explanation for the phenomenon known as storm-enhanced density, Geophys. Res. Lett., 31, L19809, doi:10.1029/2004GL020875, 2004.

    Article  Google Scholar 

  • Kutiev, I., P. Muhtarov, and P. Bradley, Penetration of ionospheric disturbances into the European region during geomagnetic storms, Adv. Space Res., 22(6), 865–867, 1998.

    Article  Google Scholar 

  • Kutiev, I., S. Watanabe, Y. Otsuka, and A. Saito, Total electron content behavior over Japan during geomagnetic storms, J. Geophys. Res., 110(A1), A01308, doi:10.1029/2004JA010586, 2005.

    Google Scholar 

  • Lin, C. H., A. D. Richmond, J. Y. Liu, H. C. Yeh, L. J. Paxton, G. Lu, H. F. Tsai, and S.-Y Su, Large-scale variations of the low-latitude ionosphere during the October-November 2003 superstorm: Observational results, J. Geophys. Res., 110, A09S28, doi:10.1029/2004JA010900, 2005.

    Google Scholar 

  • Liu, L., W. Wan, B. Ning, H. Yuan, and J. Y Liu, Low latitude ionospheric effects near 120° E during the great geomagnetic strom of July 2000, Sci. China (series A), 45 (suppl.), 148–155, 2002.

    Article  Google Scholar 

  • Liu, L., W Wan, C. C. Lee, B. Ning, and J. Y. Liu, The low latitude ionospheric effects of the April 2000 magnetic storm near 120° E, Earth Planets Space, 56, 607–612, 2004.

    Article  Google Scholar 

  • Muhtarov, P. and I. Kutiev, Empirical modelling of ionospheric storms at midlatitudes, Adv. Space Res., 22, 6, 829, 1998.

    Article  Google Scholar 

  • Muhtarov, P., I. Kutiev, and L. Cander, Geomagnetically correlated au-toregression model for short-term prediction of ionospheric parameters, Inverse Problems, 18(1), 49–65, 2002.

    Article  Google Scholar 

  • Namgaladze, A. A. and M. Förster, Analysis of the positive ionospheric response to a moderate geomagnetic storm using a global numerical model, Ann. Geophys., 18, 4, 461–477, 2000.

    Article  Google Scholar 

  • Otsuka, Y, T. Ogawa, A. Saito, T. Tsugawa, S. Fukao, and S. Miyazaki, A new technique for mapping of total electron content using GPS network in Japan, Earth Planets Space, 54, 63–70, 2002.

    Article  Google Scholar 

  • Tsugawa, T., A. Saito, and Y. Otsuka, A statistical study of large-scale traveling ionospheric disturbances using the GPS network in Japan, J. Geophys. Res., 109, A06302, doi:10.1029/2003JA010302, 2004.

    Google Scholar 

  • Vlasov, M., M. C. Kelley, and H. Kil, Analysis of ground-based and satellite observations of F region behavior during the great magnetic storm of July 15, 2000, J. Atmos. Solar Terr. Phys., 65, 1223–1234, 2003.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ivan Kutiev.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Kutiev, I., Otsuka, Y., Saito, A. et al. GPS observations of post-storm TEC enhancements at low latitudes. Earth Planet Sp 58, 1479–1486 (2006). https://doi.org/10.1186/BF03352647

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352647

Key words

  • Low latitude ionosphere
  • GPS derived Total Electron Content (TEC)
  • low latitude TEC enhancement
  • equatorial anomaly crests