Skip to main content

Advertisement

Subsurface Chemistry of the Imbrium Basin Inferred from Clementine UVVIS Spectroscopy

Article metrics

  • 276 Accesses

  • 4 Citations

Abstract

Since ejecta around an impact crater is excavated from a depth, its mineralogy and chemistry will provide us with information on the composition of the pre-impact subsurface. The depth from which crater ejecta were excavated was determined from laboratory experiments, field studies, and a simplified quantitative model (Z-model and the scaling law of ejection velocity). Based on the results of these studies, it is believed that surface material of an ejecta blanket between 1.1 and 1.5 radii from the crater was excavated from a depth of 0.13 to 0.15 radii. The following results were obtained from combining the surface and subsurface basalt distributions with crater-counting ages for the mare basalt, we obtained the following results: (1) The averages of TiO2 and FeO increased with time from the Imbrian to the Eratosthenian periods, which is represented by a continuous trend curve on the TiO2-FeO graph: (2) volcanic activities in Mare Imbrium drastically decreased and basalts changed from a low-Ti to high-Ti content around the transition of the Imbrian to Eratosthenian period: (3) basalts with less than 3 wt% TiO2 erupted in succession mainly in the Imbrian period.

References

  1. Arkani-Hamed, J., Effect of a giant impact on the thermal evolution of the moon, The Moon, 9, 183–209, 1974.

  2. Austin, M. G., J. M. Thomsen, S. F. Ruhl, D. L. Orphal, and P. H. Schultz, Calculational investigation of impact cratering dynamics: Material motions during the crater growth period, Proc. Lunar Sci. Conf., 11, 2325–2345, 1980.

  3. Binder, A. B., The mare basalt magma source region and mare basalt magma genesis, J. Geophys. Res., 87, A37–A53, 1982.

  4. Boyce, J. M., Ages of flow units in the lunar nearside maria based on Lunar Orbiter IV photographs, Proc. Lunar Sci. Conf., 7, 2717–2728, 1976.

  5. Boyce, J. M. and A. L. Dial, Relative ages of flow units in Mare Imbrium and Sinus Iridum, Proc. Lunar Sci. Conf., 6, 2585–2595, 1975.

  6. Croft, S. K., Cratering flow fields: Implications for the excavation and transient expansion stages of crater formation, Proc. Lunar Planet. Sci. Conf., 11, 2347–2378, 1980.

  7. De Hon, R. A., Thickness of the western mare basalts, Proc. Lunar Planet. Sci. Conf., 10, 2935–2955, 1979.

  8. Eliason, E. M., et al., Digital processing for a global multispectral map of the Moon from Clementine UVVIS imaging instrument, Lunar Planet. Sci., 30, 1933, 1999.

  9. Green, D. H. and A. E. Ringwood, Significance of a primitive lunar basaltic composition present in Apollo 15 soils and breccias, Earth Planet. Sci. Lett, 19, 1–8, 1973.

  10. Head, J. W., Mode of occurrence and style of emplacement of lunar mare deposits, Origins of Mare Basalts, 61–65, 1975.

  11. Head, J. W. and L. Wilson, Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of secondary crusts, Geochim. Cosmochim. Acta, 56, 2155–2175, 1992.

  12. Hiesinger, H., J. W. Head, U. Wolf, and G. Neukum, Lunar mare basalts in Oceanus Procellarum: Initial results on age and composition, Lunar Planet. Sci., 31, 1278, 2000a.

  13. Hiesinger, H., R. Jaumann, G. Neukum, and J. W. Head, Age of mare basalts on the lunar nearside, J. Geophys. Res., 105, 29,239–29,275, 2000b.

  14. Hiesinger, H., J. W. Head, U. Wolf, and G. Neukum, Lunar mare basalts: Mineralogical variations with time, Lunar Planet. Sci., 32, 1826, 2001.

  15. Housen, K. R., R. M. Schmidt, and K. A. Holsapple, Crater ejecta scaling laws: Fundamental forms based on dimensional analysis, J. Geophys. Res., 88, 2485–2499, 1983.

  16. Hubbard, N. J. and J. W. Minear, A physical and chemical model of early lunar history, Proc. Lunar Sci. Conf., 6, 1057–1085, 1975.

  17. Kesson, S. E., Mare basalts: Melting experiments and petrogenetic interpretations, Proc. Lunar Sci. Conf., 6, 921–941, 1975.

  18. Lawrence, D. J., et al., Thorium abundances on the lunar surface, J. Geo-phys. Res., 105, 20,307–20,331, 2000.

  19. Lucey, P. G., D. T. Blewett, and B. L. Jolliff, Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images, J. Geophys. Res., 105, 20,297–20,305, 2000a.

  20. Lucey, P. G., D. T. Blewett, G. J. Taylor, and B. R. Hawke, Imaging of Lunar surface maturity, J. Geophys. Res., 105, 20,297–20,305, 2000b.

  21. Maxwell, D. E., Simple Z model of cratering, ejection, and overturned flap, in Impact and Explosion Cratering, p. 1003–1008, Pergamon, NewYork, 1977.

  22. Melosh, H. J., Impact Cratering, Oxford University Press, NewYork, 1989.

  23. Moore, H. J., C. A. Hodges, and D. H. Scott, Multiringed basins-illustrated by Orientale and associated features, Proc. Lunar Sci. Conf., 5, 71–100, 1974.

  24. Neal, C. R. and L. A. Taylor, Petrogenesis of mare basalts: A record of lunar volcanism, Geochim. Cosmochim. Acta, 56, 2177–2211, 1992.

  25. Nozette, S. and the Clementine team, The Clementine mission to the Moon: Scientific overview, Science, 266, 1835–1839, 1994.

  26. Oberbeck, V. R. and R. H. Morrison, Candidate areas for in situ ancient lunar materials, Proc. Lunar Sci. Conf., 7, 2983–3005, 1976.

  27. O’Hara, M. J., D. J. Humphries, and S. Waterston, Petrogenesis of mare basalts: Implications for chemical, mineralogical, and thermal models for the Moon, Proc. Lunar Sci. Conf., 6, 1043–1055, 1975.

  28. Piekutowski, A. J., Formation of bowl-shaped craters, Proc. Lunar Sci. Conf., 11, 2129–2144, 1980.

  29. Ringwood, A. E., Some aspects of the miner element chemistry of lunar mare basalts, The Moon, 12, 127–157, 1975.

  30. Ringwood, A. E. and S. E. Kesson, A dynamic model for mare basalt petrogenesis, Proc. Lunar Sci. Conf., 7, 1697–1722, 1976.

  31. Sasaki, S., K. Nakamura, Y. Hamabe, E. Kurahasho, and T. Hiroi, Producution of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering, Nature, 410, 555–557, 2001.

  32. Schaber, G. G., Lava flows in Mare Imbrium: Geologic evaluation from Apollo orbital photography, Proc. Lunar Sci. Conf., 4, 73–92, 1973.

  33. Schmidt, R. M., Meteor crater: Energy of formation-implications of centrifuge scaling, Proc. Lunar Sci. Conf., 11, 2099–2128, 1980.

  34. Shoemaker, E. M., Impact mechanics at Meteor Crater, Arizona, in The Solar System, edited by G. Kuiper, pp. 301–336, University of Chicago Press, Chicago, 1963.

  35. Shoemaker, E. M., Synopsis of the geology of Meteor Crater, in Guidebook to the Geology of Meteor Crater, p. 1–11, 37 Ann. Mtg. Meteoritic Soc, Aug. 1974.

  36. Shih, C. and E. Schonfeld, Mare basalt genesis: A cumulate-remelting model, Proc. Lunar Sci. Conf., 7, 1757–1792, 1976.

  37. Stöffler, D., D. E. Gault, J. Wedekind, and G. Polokowski, Experimental hypervelocity impact into quartz sand: Distribution and shock metamorphism of ejecta, J. Geophys. Res., 80, 4062–4077, 1975.

  38. Strangway, D. W. and H.N. Sharpe, A model of lunar evolution, The Moon, 12, 369–397, 1975.

  39. Taylor, S. R. and P. Jakes, The geochemical evolution of the moon, Proc. Lunar Sci. Conf., 5, 1287–1305, 1974.

  40. Walker, D., J. Longhi, E. M. Stolper, T. L. Grove, and J. F. Hays, Origin of titaniferous lunar basalts, Geochim. Cosmochim. Acta, 39, 1219–1235, 1975.

  41. Wilhelms, D. E., The Geologic history of the Moon, U.S. Geol. Surv. Prof. Pap., 1348, 302pp, 1987.

Download references

Author information

Correspondence to Hisashi Otake.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Otake, H., Mizutani, H. Subsurface Chemistry of the Imbrium Basin Inferred from Clementine UVVIS Spectroscopy. Earth Planet Sp 58, 1499–1510 (2006) doi:10.1186/BF03352649

Download citation

Key words

  • Imbrium basin
  • subsurface
  • ejecta
  • age
  • volcanism