Skip to main content

Subsurface Chemistry of the Imbrium Basin Inferred from Clementine UVVIS Spectroscopy

Abstract

Since ejecta around an impact crater is excavated from a depth, its mineralogy and chemistry will provide us with information on the composition of the pre-impact subsurface. The depth from which crater ejecta were excavated was determined from laboratory experiments, field studies, and a simplified quantitative model (Z-model and the scaling law of ejection velocity). Based on the results of these studies, it is believed that surface material of an ejecta blanket between 1.1 and 1.5 radii from the crater was excavated from a depth of 0.13 to 0.15 radii. The following results were obtained from combining the surface and subsurface basalt distributions with crater-counting ages for the mare basalt, we obtained the following results: (1) The averages of TiO2 and FeO increased with time from the Imbrian to the Eratosthenian periods, which is represented by a continuous trend curve on the TiO2-FeO graph: (2) volcanic activities in Mare Imbrium drastically decreased and basalts changed from a low-Ti to high-Ti content around the transition of the Imbrian to Eratosthenian period: (3) basalts with less than 3 wt% TiO2 erupted in succession mainly in the Imbrian period.

References

  • Arkani-Hamed, J., Effect of a giant impact on the thermal evolution of the moon, The Moon, 9, 183–209, 1974.

    Article  Google Scholar 

  • Austin, M. G., J. M. Thomsen, S. F. Ruhl, D. L. Orphal, and P. H. Schultz, Calculational investigation of impact cratering dynamics: Material motions during the crater growth period, Proc. Lunar Sci. Conf., 11, 2325–2345, 1980.

    Google Scholar 

  • Binder, A. B., The mare basalt magma source region and mare basalt magma genesis, J. Geophys. Res., 87, A37–A53, 1982.

    Article  Google Scholar 

  • Boyce, J. M., Ages of flow units in the lunar nearside maria based on Lunar Orbiter IV photographs, Proc. Lunar Sci. Conf., 7, 2717–2728, 1976.

    Google Scholar 

  • Boyce, J. M. and A. L. Dial, Relative ages of flow units in Mare Imbrium and Sinus Iridum, Proc. Lunar Sci. Conf., 6, 2585–2595, 1975.

    Google Scholar 

  • Croft, S. K., Cratering flow fields: Implications for the excavation and transient expansion stages of crater formation, Proc. Lunar Planet. Sci. Conf., 11, 2347–2378, 1980.

    Google Scholar 

  • De Hon, R. A., Thickness of the western mare basalts, Proc. Lunar Planet. Sci. Conf., 10, 2935–2955, 1979.

    Google Scholar 

  • Eliason, E. M., et al., Digital processing for a global multispectral map of the Moon from Clementine UVVIS imaging instrument, Lunar Planet. Sci., 30, 1933, 1999.

    Google Scholar 

  • Green, D. H. and A. E. Ringwood, Significance of a primitive lunar basaltic composition present in Apollo 15 soils and breccias, Earth Planet. Sci. Lett, 19, 1–8, 1973.

    Article  Google Scholar 

  • Head, J. W., Mode of occurrence and style of emplacement of lunar mare deposits, Origins of Mare Basalts, 61–65, 1975.

    Google Scholar 

  • Head, J. W. and L. Wilson, Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of secondary crusts, Geochim. Cosmochim. Acta, 56, 2155–2175, 1992.

    Article  Google Scholar 

  • Hiesinger, H., J. W. Head, U. Wolf, and G. Neukum, Lunar mare basalts in Oceanus Procellarum: Initial results on age and composition, Lunar Planet. Sci., 31, 1278, 2000a.

    Google Scholar 

  • Hiesinger, H., R. Jaumann, G. Neukum, and J. W. Head, Age of mare basalts on the lunar nearside, J. Geophys. Res., 105, 29,239–29,275, 2000b.

    Article  Google Scholar 

  • Hiesinger, H., J. W. Head, U. Wolf, and G. Neukum, Lunar mare basalts: Mineralogical variations with time, Lunar Planet. Sci., 32, 1826, 2001.

    Google Scholar 

  • Housen, K. R., R. M. Schmidt, and K. A. Holsapple, Crater ejecta scaling laws: Fundamental forms based on dimensional analysis, J. Geophys. Res., 88, 2485–2499, 1983.

    Article  Google Scholar 

  • Hubbard, N. J. and J. W. Minear, A physical and chemical model of early lunar history, Proc. Lunar Sci. Conf., 6, 1057–1085, 1975.

    Google Scholar 

  • Kesson, S. E., Mare basalts: Melting experiments and petrogenetic interpretations, Proc. Lunar Sci. Conf., 6, 921–941, 1975.

    Google Scholar 

  • Lawrence, D. J., et al., Thorium abundances on the lunar surface, J. Geo-phys. Res., 105, 20,307–20,331, 2000.

    Article  Google Scholar 

  • Lucey, P. G., D. T. Blewett, and B. L. Jolliff, Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images, J. Geophys. Res., 105, 20,297–20,305, 2000a.

    Article  Google Scholar 

  • Lucey, P. G., D. T. Blewett, G. J. Taylor, and B. R. Hawke, Imaging of Lunar surface maturity, J. Geophys. Res., 105, 20,297–20,305, 2000b.

    Article  Google Scholar 

  • Maxwell, D. E., Simple Z model of cratering, ejection, and overturned flap, in Impact and Explosion Cratering, p. 1003–1008, Pergamon, NewYork, 1977.

    Google Scholar 

  • Melosh, H. J., Impact Cratering, Oxford University Press, NewYork, 1989.

    Google Scholar 

  • Moore, H. J., C. A. Hodges, and D. H. Scott, Multiringed basins-illustrated by Orientale and associated features, Proc. Lunar Sci. Conf., 5, 71–100, 1974.

    Google Scholar 

  • Neal, C. R. and L. A. Taylor, Petrogenesis of mare basalts: A record of lunar volcanism, Geochim. Cosmochim. Acta, 56, 2177–2211, 1992.

    Article  Google Scholar 

  • Nozette, S. and the Clementine team, The Clementine mission to the Moon: Scientific overview, Science, 266, 1835–1839, 1994.

    Article  Google Scholar 

  • Oberbeck, V. R. and R. H. Morrison, Candidate areas for in situ ancient lunar materials, Proc. Lunar Sci. Conf., 7, 2983–3005, 1976.

    Google Scholar 

  • O’Hara, M. J., D. J. Humphries, and S. Waterston, Petrogenesis of mare basalts: Implications for chemical, mineralogical, and thermal models for the Moon, Proc. Lunar Sci. Conf., 6, 1043–1055, 1975.

    Google Scholar 

  • Piekutowski, A. J., Formation of bowl-shaped craters, Proc. Lunar Sci. Conf., 11, 2129–2144, 1980.

    Google Scholar 

  • Ringwood, A. E., Some aspects of the miner element chemistry of lunar mare basalts, The Moon, 12, 127–157, 1975.

    Article  Google Scholar 

  • Ringwood, A. E. and S. E. Kesson, A dynamic model for mare basalt petrogenesis, Proc. Lunar Sci. Conf., 7, 1697–1722, 1976.

    Google Scholar 

  • Sasaki, S., K. Nakamura, Y. Hamabe, E. Kurahasho, and T. Hiroi, Producution of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering, Nature, 410, 555–557, 2001.

    Article  Google Scholar 

  • Schaber, G. G., Lava flows in Mare Imbrium: Geologic evaluation from Apollo orbital photography, Proc. Lunar Sci. Conf., 4, 73–92, 1973.

    Google Scholar 

  • Schmidt, R. M., Meteor crater: Energy of formation-implications of centrifuge scaling, Proc. Lunar Sci. Conf., 11, 2099–2128, 1980.

    Google Scholar 

  • Shoemaker, E. M., Impact mechanics at Meteor Crater, Arizona, in The Solar System, edited by G. Kuiper, pp. 301–336, University of Chicago Press, Chicago, 1963.

  • Shoemaker, E. M., Synopsis of the geology of Meteor Crater, in Guidebook to the Geology of Meteor Crater, p. 1–11, 37 Ann. Mtg. Meteoritic Soc, Aug. 1974.

    Google Scholar 

  • Shih, C. and E. Schonfeld, Mare basalt genesis: A cumulate-remelting model, Proc. Lunar Sci. Conf., 7, 1757–1792, 1976.

    Google Scholar 

  • Stöffler, D., D. E. Gault, J. Wedekind, and G. Polokowski, Experimental hypervelocity impact into quartz sand: Distribution and shock metamorphism of ejecta, J. Geophys. Res., 80, 4062–4077, 1975.

    Article  Google Scholar 

  • Strangway, D. W. and H.N. Sharpe, A model of lunar evolution, The Moon, 12, 369–397, 1975.

    Article  Google Scholar 

  • Taylor, S. R. and P. Jakes, The geochemical evolution of the moon, Proc. Lunar Sci. Conf., 5, 1287–1305, 1974.

    Google Scholar 

  • Walker, D., J. Longhi, E. M. Stolper, T. L. Grove, and J. F. Hays, Origin of titaniferous lunar basalts, Geochim. Cosmochim. Acta, 39, 1219–1235, 1975.

    Article  Google Scholar 

  • Wilhelms, D. E., The Geologic history of the Moon, U.S. Geol. Surv. Prof. Pap., 1348, 302pp, 1987.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hisashi Otake.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Otake, H., Mizutani, H. Subsurface Chemistry of the Imbrium Basin Inferred from Clementine UVVIS Spectroscopy. Earth Planet Sp 58, 1499–1510 (2006). https://doi.org/10.1186/BF03352649

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352649

Key words

  • Imbrium basin
  • subsurface
  • ejecta
  • age
  • volcanism