Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Comment on “Earthquake cycles and physical modeling of the process leading up to a large earthquake”

References

  1. Abercrombie, R. E. and J. R. Rice, Can observations of earthquake scaling constrain slip weakening?, Geophys. J. Int., 162, 406–424, 2005.

    Article  Google Scholar 

  2. Andrews, D. J., Rupture propagation with finite stress in antiplane strain, J. Geophys. Res., 81, 3575–3582, 1976a.

    Article  Google Scholar 

  3. Andrews, D. J., Rupture velocity of plane strain shear crack, J. Geophys. Res., 81, 5679–5687, 1976b.

    Article  Google Scholar 

  4. Andrews, D. J., A fault constitutive relation accounting for thermal pres-surization of pore fluid, J. Geophys. Res., 107(B12), 2363, doi: 10.1029/2002JB001942, ESE 15-1–15-8, 2002.

    Article  Google Scholar 

  5. Bizzarri, A. and M. Cocco, Slip-weakening behavior during the propagation of dynamic ruptures obeying rate- and state-dependent friction laws, J. Geophys. Res., 108(B8), 2373, doi: 10.1029/2002JB002198, 2003.

    Article  Google Scholar 

  6. Bizzarri, A. and M. Cocco, Thermal pressurization in 3-D dynamic spontaneous rupture models with cohesive zone, Eos Trans. AGU, 85(47), Fall Meet. Suppl., Abstract T23A-0572, 2004.

    Google Scholar 

  7. Bizzarri, A. and M. Cocco, 3D dynamic simulations of spontaneous rupture propagation governed by different constitutive laws with rake rotation allowed, Ann. Geophys., 48(2), 279–299, 2005.

    Google Scholar 

  8. Bizzarri, A. and M. Cocco, A thermal pressurization model for the spontaneous dynamic rupture propagation on a three-dimensional fault: 1. Methodological approach, J. Geophys. Res., 111, B05303, doi:10.1029/2005JB003862, 2006a.

    Google Scholar 

  9. Bizzarri, A. and M. Cocco, A thermal pressurization model for the spontaneous dynamic rupture propagation on a three-dimensional fault: 2. Traction evolution and dynamic parameters, J. Geophys. Res., 111, B05304, doi:10.1029/2005JB003864, 2006b.

    Google Scholar 

  10. Bizzarri, A., M. Cocco, D. J. Andrews, and E. Boschi, Solving the dynamic rupture problem with different numerical approaches and constitutive laws, Geophys. J. Int., 144, 656–678, 2001.

    Article  Google Scholar 

  11. Brodsky, E. E. and H. Kanamori, Elastohydrodynamic lubrication of faults, J. Geophys. Res., 106(B8), 16,357–16,374, 2001.

    Article  Google Scholar 

  12. Campillo, M. and I. R. Ionescu, Initiation of antiplane shear instability under slip dependent friction, J. Geophys. Res., 102(B9), 20,363–20,371, 1997.

    Article  Google Scholar 

  13. Chester, F. M. and J. S. Chester, Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California, Tectonophysics, 295, 199–221, 1998.

    Article  Google Scholar 

  14. Cocco, M. and A. Bizzarri, On the slip-weakening behavior of rate- and state-dependent constitutive laws, Geophys. Res. Lett., 29(11), 11–1–11–4, 2002.

    Article  Google Scholar 

  15. Day, S. M., Three-dimensional finite difference simulation of fault dynamics: Rectangular faults with fixed rupture velocity, Bull. Seismol. Soc. Am., 72, 705–727, 1982.

    Google Scholar 

  16. Di Toro, G., D. L. Golsdby, and T. T. Tullis, Friction falls towards zero in quartz rock as slip velocity approaches seismic rates, Nature, 427, 436–439, 2004.

    Article  Google Scholar 

  17. Dieterich, J. H. and B. Kilgore, Implications of fault constitutive properties for earthquake prediction, Proc. Natl. Acad. Sci. USA, 93, 3787–3794, 1996.

    Article  Google Scholar 

  18. Ida, Y., Cohesive force across the tip of a longitudinal—shear crack and Griffith’s specific surface energy, J. Geophys. Res., 77(20), 3796–3805, 1972.

    Article  Google Scholar 

  19. Mair, K. and C. Marone, Shear heating in granular layers, Pure Appl. Geophys., 157, 1847–1866, 2000.

    Article  Google Scholar 

  20. Ohnaka, M., A constitutive scaling law and a unified comprehension for frictional slip failure, shear fracture of intact rock, and earthquake rupture, J. Geophys. Res., 108, 2080, doi: 10.1029/2002JB000123, 2003.

    Article  Google Scholar 

  21. Ohnaka, M., Earthquake cycles and physical modeling of the process leading up to a large earthquake, Earth Planets Space, 56, 773–793, 2004.

    Article  Google Scholar 

  22. Ohnaka, M. and T. Yamashita, A cohesive zone model for dynamic shear faulting based on experimentally inferred constitutive relation and strong motion source parameters, J. Geophys. Res., 94(B4), 4089–4104, 1989.

    Article  Google Scholar 

  23. Ohnaka, M., Y. Kuwahara, and K. Yamamoto, Constitutive relations between dynamic physical parameters near a tip of the propagation slip zone during stick-slip shear failure, Tectonophysics, 144, 109–125, 1987.

    Article  Google Scholar 

  24. Okubo, P. G. and J. H. Dieterich, Effects of physical fault properties on frictional instabilities produced on simulated faults, J. Geophys. Res., 89, 5817–5827, 1984.

    Article  Google Scholar 

  25. Okubo, P. G. and J. H. Dieterich, State variable fault constitutive relations for dynamic slip, in Earthquake Source Mechanics, Geophysical Monograph, 37, Maurice Ewing Series, 6, edited by S. Das, J. Boatwright, and C. Scholz, Am. Geophys. Union, Washington D.C., 25–35, 1986.

    Google Scholar 

  26. Olsen, K. B., R. Madariaga, and R. J. Archuleta, Three-dimensional dynamic simulation of the 1992 Landers earthquake, Science, 278, 834–838, 1997.

    Article  Google Scholar 

  27. Rice, J. R., Flash heating at asperity contacts and rate-dependent friction, Eos Trans. AGU, 80(46), Fall Meet. Suppl., p. F471, 1999.

    Google Scholar 

  28. Richardson, E. and C. Marone, Effects of normal stress vibrations on frictional healing, J. Geophys. Res., 104(B12), 28,859–28,878, 1999.

    Article  Google Scholar 

  29. Scholz, C. H., Earthquakes and friction laws, Nature, 391, 37–42, 1998.

    Article  Google Scholar 

  30. Sibson, R. H., Thickness of the seismic slip zone, Bull. Seism. Soc. Am., 93(3), 1169–1178, 2003.

    Article  Google Scholar 

  31. Sleep, N. H., Application of a unified rate and state friction theory to the mechanics of fault zones with strain localization, J. Geophys. Res., 102(B2), 2875–2895, 1997.

    Article  Google Scholar 

  32. Sleep, N. H., E. Richardson, and C. Marone, Physics of friction and strain rate localization in synthetic fault gouge, J. Geophys. Res., 106(B11), 25,875–25,890, 2000.

    Article  Google Scholar 

  33. Tinti, E., A. Bizzarri, A. Piatanesi, and M. Cocco, Estimates of slip weakening distance for different dynamic rupture models, Geophys. Res. Lett., 31(L02611), doi: 10.1029/2003GL018811, 2004.

    Google Scholar 

  34. Tsutsumi, A. and T. Shimamoto, High-velocity frictional properties of gabbro, Geophys. Res. Lett., 24, 699–702, 1997.

    Article  Google Scholar 

  35. Tullis, T. E. and D. Goldsby, Laboratory experiments on fault shear resistance relevant to coseismic earthquake slip, SCEC Annual Report for 2003, 2003.

    Google Scholar 

  36. Wilson, B., T. Dewers, and Z. Reches, Surface area and surface energy of fault gouge: observations of the San Andreas gouge in Tejon Pass area, California (abstract), Seismol. Soc. Am. Meet. 2004, 2004.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Bizzarri.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bizzarri, A., Cocco, M. Comment on “Earthquake cycles and physical modeling of the process leading up to a large earthquake”. Earth Planet Sp 58, 1525–1528 (2006). https://doi.org/10.1186/BF03352653

Download citation

Keywords

  • Fault Zone
  • Slip Velocity
  • Slip Rate
  • Cohesive Zone
  • Traction Evolution