Skip to main content


Comment on “Earthquake cycles and physical modeling of the process leading up to a large earthquake”

Article metrics

  • 220 Accesses

  • 19 Citations


  1. Abercrombie, R. E. and J. R. Rice, Can observations of earthquake scaling constrain slip weakening?, Geophys. J. Int., 162, 406–424, 2005.

  2. Andrews, D. J., Rupture propagation with finite stress in antiplane strain, J. Geophys. Res., 81, 3575–3582, 1976a.

  3. Andrews, D. J., Rupture velocity of plane strain shear crack, J. Geophys. Res., 81, 5679–5687, 1976b.

  4. Andrews, D. J., A fault constitutive relation accounting for thermal pres-surization of pore fluid, J. Geophys. Res., 107(B12), 2363, doi: 10.1029/2002JB001942, ESE 15-1–15-8, 2002.

  5. Bizzarri, A. and M. Cocco, Slip-weakening behavior during the propagation of dynamic ruptures obeying rate- and state-dependent friction laws, J. Geophys. Res., 108(B8), 2373, doi: 10.1029/2002JB002198, 2003.

  6. Bizzarri, A. and M. Cocco, Thermal pressurization in 3-D dynamic spontaneous rupture models with cohesive zone, Eos Trans. AGU, 85(47), Fall Meet. Suppl., Abstract T23A-0572, 2004.

  7. Bizzarri, A. and M. Cocco, 3D dynamic simulations of spontaneous rupture propagation governed by different constitutive laws with rake rotation allowed, Ann. Geophys., 48(2), 279–299, 2005.

  8. Bizzarri, A. and M. Cocco, A thermal pressurization model for the spontaneous dynamic rupture propagation on a three-dimensional fault: 1. Methodological approach, J. Geophys. Res., 111, B05303, doi:10.1029/2005JB003862, 2006a.

  9. Bizzarri, A. and M. Cocco, A thermal pressurization model for the spontaneous dynamic rupture propagation on a three-dimensional fault: 2. Traction evolution and dynamic parameters, J. Geophys. Res., 111, B05304, doi:10.1029/2005JB003864, 2006b.

  10. Bizzarri, A., M. Cocco, D. J. Andrews, and E. Boschi, Solving the dynamic rupture problem with different numerical approaches and constitutive laws, Geophys. J. Int., 144, 656–678, 2001.

  11. Brodsky, E. E. and H. Kanamori, Elastohydrodynamic lubrication of faults, J. Geophys. Res., 106(B8), 16,357–16,374, 2001.

  12. Campillo, M. and I. R. Ionescu, Initiation of antiplane shear instability under slip dependent friction, J. Geophys. Res., 102(B9), 20,363–20,371, 1997.

  13. Chester, F. M. and J. S. Chester, Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California, Tectonophysics, 295, 199–221, 1998.

  14. Cocco, M. and A. Bizzarri, On the slip-weakening behavior of rate- and state-dependent constitutive laws, Geophys. Res. Lett., 29(11), 11–1–11–4, 2002.

  15. Day, S. M., Three-dimensional finite difference simulation of fault dynamics: Rectangular faults with fixed rupture velocity, Bull. Seismol. Soc. Am., 72, 705–727, 1982.

  16. Di Toro, G., D. L. Golsdby, and T. T. Tullis, Friction falls towards zero in quartz rock as slip velocity approaches seismic rates, Nature, 427, 436–439, 2004.

  17. Dieterich, J. H. and B. Kilgore, Implications of fault constitutive properties for earthquake prediction, Proc. Natl. Acad. Sci. USA, 93, 3787–3794, 1996.

  18. Ida, Y., Cohesive force across the tip of a longitudinal—shear crack and Griffith’s specific surface energy, J. Geophys. Res., 77(20), 3796–3805, 1972.

  19. Mair, K. and C. Marone, Shear heating in granular layers, Pure Appl. Geophys., 157, 1847–1866, 2000.

  20. Ohnaka, M., A constitutive scaling law and a unified comprehension for frictional slip failure, shear fracture of intact rock, and earthquake rupture, J. Geophys. Res., 108, 2080, doi: 10.1029/2002JB000123, 2003.

  21. Ohnaka, M., Earthquake cycles and physical modeling of the process leading up to a large earthquake, Earth Planets Space, 56, 773–793, 2004.

  22. Ohnaka, M. and T. Yamashita, A cohesive zone model for dynamic shear faulting based on experimentally inferred constitutive relation and strong motion source parameters, J. Geophys. Res., 94(B4), 4089–4104, 1989.

  23. Ohnaka, M., Y. Kuwahara, and K. Yamamoto, Constitutive relations between dynamic physical parameters near a tip of the propagation slip zone during stick-slip shear failure, Tectonophysics, 144, 109–125, 1987.

  24. Okubo, P. G. and J. H. Dieterich, Effects of physical fault properties on frictional instabilities produced on simulated faults, J. Geophys. Res., 89, 5817–5827, 1984.

  25. Okubo, P. G. and J. H. Dieterich, State variable fault constitutive relations for dynamic slip, in Earthquake Source Mechanics, Geophysical Monograph, 37, Maurice Ewing Series, 6, edited by S. Das, J. Boatwright, and C. Scholz, Am. Geophys. Union, Washington D.C., 25–35, 1986.

  26. Olsen, K. B., R. Madariaga, and R. J. Archuleta, Three-dimensional dynamic simulation of the 1992 Landers earthquake, Science, 278, 834–838, 1997.

  27. Rice, J. R., Flash heating at asperity contacts and rate-dependent friction, Eos Trans. AGU, 80(46), Fall Meet. Suppl., p. F471, 1999.

  28. Richardson, E. and C. Marone, Effects of normal stress vibrations on frictional healing, J. Geophys. Res., 104(B12), 28,859–28,878, 1999.

  29. Scholz, C. H., Earthquakes and friction laws, Nature, 391, 37–42, 1998.

  30. Sibson, R. H., Thickness of the seismic slip zone, Bull. Seism. Soc. Am., 93(3), 1169–1178, 2003.

  31. Sleep, N. H., Application of a unified rate and state friction theory to the mechanics of fault zones with strain localization, J. Geophys. Res., 102(B2), 2875–2895, 1997.

  32. Sleep, N. H., E. Richardson, and C. Marone, Physics of friction and strain rate localization in synthetic fault gouge, J. Geophys. Res., 106(B11), 25,875–25,890, 2000.

  33. Tinti, E., A. Bizzarri, A. Piatanesi, and M. Cocco, Estimates of slip weakening distance for different dynamic rupture models, Geophys. Res. Lett., 31(L02611), doi: 10.1029/2003GL018811, 2004.

  34. Tsutsumi, A. and T. Shimamoto, High-velocity frictional properties of gabbro, Geophys. Res. Lett., 24, 699–702, 1997.

  35. Tullis, T. E. and D. Goldsby, Laboratory experiments on fault shear resistance relevant to coseismic earthquake slip, SCEC Annual Report for 2003, 2003.

  36. Wilson, B., T. Dewers, and Z. Reches, Surface area and surface energy of fault gouge: observations of the San Andreas gouge in Tejon Pass area, California (abstract), Seismol. Soc. Am. Meet. 2004, 2004.

Download references

Author information

Correspondence to A. Bizzarri.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bizzarri, A., Cocco, M. Comment on “Earthquake cycles and physical modeling of the process leading up to a large earthquake”. Earth Planet Sp 58, 1525–1528 (2006) doi:10.1186/BF03352653

Download citation


  • Fault Zone
  • Slip Velocity
  • Slip Rate
  • Cohesive Zone
  • Traction Evolution