Skip to main content

Dynamical modeling of trench retreat driven by the slab interaction with the mantle transition zone

Abstract

We present the 2-D self-consistent dynamical model of interactions of a subducting slab with the 410-km and 660-km phase boundaries to further our understanding of the relation between the slab stagnation/penetration and the trench migration. Our model takes into account freely-movable plate boundaries and the difference between tensional and compressional yield strengths in the lithosphere. For the case in which the tensional strength is weaker than the compressional one, the negative buoyancy of the subducting slab produces extension of the overriding lithosphere and, accordingly, the trench retreats. Interactions with the 410-km and 660-km phasetransition boundaries further promote the trench retreat, and the dip angle of the slab is substantially decreased. This enhances the resistance of the 660-km phase boundary against the slab penetration. Slab weakening caused by the grain-size reduction in the transition zone may result in a horizontally-lying slab and trench retreat.

References

  • Akaogi, M. and E. Ito, Refinement of enthalpy measurement of MgSiO3 perovskite and negative pressure-temperature slopes for perovskite-forming reactions, Geophys. Res. Lett., 20, 1839–1842, 1993.

    Article  Google Scholar 

  • Akaogi, M., E. Ito, and A. Navrotsky, Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application, J. Geophys. Res., 94, 15671–15685, 1989.

    Article  Google Scholar 

  • Brace, W. F. and D. L. Kohlstedt, Limits on lithospheric stress imposed by laboratory experiments, J. Geophys. Res., 85, 6248–6252, 1980.

    Article  Google Scholar 

  • Byerlee, J. D., Friction of rocks, Pure Appl. Geophys., 116, 615–626, 1978.

    Article  Google Scholar 

  • Christensen, U. R., Convection with pressure- and temperature-dependent non-Newtonian rheology, Geophys. J. R. Astron. Soc., 77, 343–384, 1984.

    Article  Google Scholar 

  • Christensen, U. R., The influence of trench migration on slab penetration into the lower mantle, Earth Planet. Sci. Lett., 140, 27–39, 1996.

    Article  Google Scholar 

  • Christensen, U. R. and D. A. Yuen, The interaction of a subducting lithospheric slab with a chemical or phase boundary, J. Geophys. Res., 89, 4389–4402, 1984.

    Article  Google Scholar 

  • Christensen, U. R. and D. A. Yuen, Layered convection induced by phase transitions, J. Geophys. Res., 90, 10291–10300, 1985.

    Article  Google Scholar 

  • Čížková, H., J. van Hunen, A. P. van den Berg, and N. J. Vlaar, The influence of rheological weakening and yield stress on the interaction of slabs with the 670 km discontinuity, Earth Planet. Sci. Lett., 199, 447–457, 2002.

    Article  Google Scholar 

  • Dziewonski, A. M. and D. L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297–356, 1981.

    Article  Google Scholar 

  • Enns, A., T. W. Becker, and H. Schmeling, The dynamics of subduction and trench migration for viscosity stratification, Geophys. J. Int., 160, 761–775, 2005. Fei, Y., J. Van Orman, J. Li, W. van Westrenen, C. Sanloup, W. Minarik, K. K. Hirose, T. Komabayashi, M. Walter, and K. Funakoshi, Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications, J. Geophys. Res.109, B02305, doi:10.1029/2003JB002562, 2004.

    Article  Google Scholar 

  • Flanagan, M. P. and P. M. Shearer, Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors, J. Geophys. Res., 103, 2673–2692, 1998.

    Article  Google Scholar 

  • Forsyth, D. W. and S. Uyeda, On the relative importance of the driving forces of plate motion, Geophys. J. R. Astron. Soc., 43, 163–200, 1975.

    Article  Google Scholar 

  • Frohlich, C., The nature of deep-focus earthquakes, Ann. Rev. Earth Planet. Sci., 17, 227–254, 1989.

    Article  Google Scholar 

  • Fukao, Y., S. Widiyantoro, and M. Obayashi, Stagnant slabs in the upper and lower mantle transition region, Rev. Geophys., 39, 291–323, 2001.

    Article  Google Scholar 

  • Fukao, Y., M. Obayashi, H. Inoue, and M. Nenbai, Subducting slabs stagnant in the mantle transition zone, J. Geophys. Res., 97, 4809–4822, 1992.

    Article  Google Scholar 

  • Funiciello, F., C. Faccenna, D. Giardini, and K. Regenauer-Lieb, Dynamics of retreating slabs: 2. Insights from three-dimensional laboratory experiments, J. Geophys. Res., 108, 2207, doi:10.1029/2001JB000896, 2003.

    Article  Google Scholar 

  • Garfunkel, Z., C. A. Anderson, and G. Schubert, Mantle circulation and the lateral migration of subducted slabs, J. Geophys. Res., 91, 7205–7223, 1986.

    Article  Google Scholar 

  • Gordon, R. G., Diffuse oceanic plate boundaries: Strain rates, vertically averaged rheology, and comparisons with narrow plate boundaries and stable plate interiors, in The History and Dynamics of Global Plate Motions, edited by M. A. Richards, R. Gordon, and R. van der Hilst, Geophys. Monograph Series 121, pp. 143–159, Am. Geophys. Union, Washington D.C., 2000.

    Chapter  Google Scholar 

  • Gurnis, M. and B. H. Hager, Controls of the structure of subducted slabs, Nature, 335, 317–321, 1988.

    Article  Google Scholar 

  • Gurnis, M., J. Ritsema, H.-J. van Heijst, and S. Zhong, Tonga slab deformation: The influence of a lower mantle upwelling on a slab in a young subduction zone, Geophys. Res. Lett., 27, 2373–2376, 2000.

    Article  Google Scholar 

  • Heuret, A. and S. Lallemand, Plate motions, slab dynamics and back-arc deformation, Phys. Earth Planet. Inter., 149, 31–51, 2005.

    Article  Google Scholar 

  • Isacks, B. and P. Molnar, Distribution of stresses in the descending lithosphere from a global survey of focal-mechanism solutions of mantle earthquakes, Rev. Geophys., 9, 103–174, 1971.

    Article  Google Scholar 

  • Ito, E. and H. Sato, Aseismicity in the lower mantle by superplasticity of the descending slab, Nature, 351, 140–141, 1991.

    Article  Google Scholar 

  • Kameyama, M., Conditions for plate tectonics inferred from numerical experiments of mantle convection and shear zone formation, Ph.D. Thesis, University of Tokyo, 1998.

    Google Scholar 

  • Karato, S. and P. Wu, Rheology of the upper mantle: A synthesis, Science, 260, 771–778, 1993.

    Article  Google Scholar 

  • Karato, S., S. Zhang, and H.-R. Wenk, Superplasticity in the Earth’s lower mantle: Evidence from seismic anisotropy and rock physics, Science, 270, 458–461, 1995.

    Article  Google Scholar 

  • Katsura, T. and E. Ito, The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel, J. Geophys. Res., 94, 15663–15670, 1989.

    Article  Google Scholar 

  • Katsura, T., H. Yamada, T. Shinmei, A. Kubo, S. Ono, M. Kanzaki, A. Yoneda, M. J. Walter, E. Ito, S. Urakawa, K. Funakoshi, and W. Utsumi, Post-spinel transition in Mg2SiO4 determined by high P-T in situ X-ray diffractometry, Phys. Earth Planet. Inter., 136, 11–24, 2003.

    Article  Google Scholar 

  • Kincaid, C. and P. Olson, An experimental study of subduction and slab migration, J. Geophys. Res., 92, 13832–13840, 1987.

    Article  Google Scholar 

  • Kirby, S. H., Tectonic stresses in the lithosphere: Constraints provided by the experimental deformation of rocks, J. Geophys. Res., 85, 6353–6363, 1980.

    Article  Google Scholar 

  • Kohlstedt, D. L., B. Evans, and S. J. Mackwell, Strength of the lithosphere: Constraints imposed by laboratory experiments, J. Geophys. Res., 100, 17587–17602, 1995.

    Article  Google Scholar 

  • Milne, G. A., J. X. Mitrovica, and J. L. Davis, Near-field hydro-isostasy: The implementation of a revised sea-level equation, Geophys. J. Int., 139, 464–482, 1999.

    Article  Google Scholar 

  • Molnar, P. and T. Atwater, Interarc spreading and Cordilleran tectonics as alternates related to the age of subducted oceanic lithosphere, Earth Planet. Sci. Lett., 41, 330–340, 1978.

    Article  Google Scholar 

  • Nakakuki, T., H. Sato, and H. Fujimoto, Interaction of the upwelling plume with the phase and chemical boundary at the 670 km discontinuity: Effects of temperature-dependent viscosity, Earth Planet. Sci. Lett., 121, 369–384, 1994.

    Article  Google Scholar 

  • Okuno, J. and M. Nakada, Effects of water load on geophysical signals due to glacial rebound and implications for mantle viscosity, Earth Planets Space, 53, 1121–1135, 2001.

    Article  Google Scholar 

  • Ranalli, G., Rheology of the Earth, 366 pp., Allen and Unwin, Boston, 1987.

    Google Scholar 

  • Riedel, M. R. and S. Karato, Grain-size evolution in subducted oceanic lithosphere associated with the olivine-spinel transformation and its effects on rheology, Earth Planet. Sci. Lett., 148, 27–43, 1997.

    Article  Google Scholar 

  • Rubie, D. C., The olivine→spinel transformation and the rheology of subducting lithosphere, Nature, 308, 505–508, 1984.

    Article  Google Scholar 

  • Schmeling, H., R. Monz, and D. C. Rubie, The influence of olivine metastability on the dynamics of subduction, Earth Planet. Sci. Lett., 165, 55–66, 1999.

    Article  Google Scholar 

  • Scholz, C. H., The Mechanics of Earthquakes and Faulting, 439 pp., Cambridge University Press, New York, 1990.

    Google Scholar 

  • Seno, T. and Y. Yamanaka, Arc stresses determined by slabs: Implications au]for mechanisms of back-arc spreading, Geophys. Res. Lett., 25, 3227–3230, 1998.

    Article  Google Scholar 

  • Seno, T. and M. Yoshida, Where and why do large shallow intraslab earthquakes occur?, Phys. Earth Planet. Inter., 141, 183–206, 2004.

    Article  Google Scholar 

  • Sleep, N. H., Evolution of the mode of convection within terrestrial planets, J. Geophys. Res., 105, 17563–17578, 2000.

    Article  Google Scholar 

  • Tajima, F. and S. P. Grand, Evidence of high velocity anomalies in the transition zone associated with southern Kurile subduction zone, Geophys. Res. Lett., 22, 3139–3142, 1995.

    Article  Google Scholar 

  • Tajima, F. and S. P. Grand, Variation of transition zone high-velocity anomalies and depression of 660 km discontinuity associated with subduction zones from the southern Kuriles to Izu-Bonin and Ryukyu, J. Geophys. Res., 103, 15015–15036, 1998.

    Article  Google Scholar 

  • Takewaki, H., A. Nishiguchi, and T. Yabe, Cubic interpolated pseudo-particle method (CIP) for solving hyperbolic-type equations, J. Comp. Phys., 61, 261–268, 1985.

    Article  Google Scholar 

  • Tonegawa, T., K. Hirahara, and T. Shibutani, Detailed structure of the upper mantle discontinuities around the Japan subduction zone imaged by receiver function analyses, Earth Planets Space, 57, 5–14, 2005.

    Article  Google Scholar 

  • Turcotte, D. L. and G. Schubert, Geodynamics: Applications of Continuum Physics to Geological Problems, pp. 450, John Wiley and Sons, New York, 1982.

    Google Scholar 

  • van der Hilst, R., Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench, Nature, 374, 154–157, 1995.

    Article  Google Scholar 

  • van der Hilst, R. and T. Seno, Effects of relative plate motion on the deep structure and penetration depth of slabs below the Izu-Bonin and Mariana island arcs, Earth Planet. Sci. Lett., 120, 395–407, 1993.

    Article  Google Scholar 

  • van der Hilst, R., R. Engdahl, W. Spakman, and G. Nolet, Tomographic imaging of subducted lithosphere below northwest Pacific island arcs, Nature, 353, 37–43, 1991.

    Article  Google Scholar 

  • Wessel, P. and W. H. F. Smith, New, improved version of the Generic Mapping Tools released, EOS Trans. Am. Geophys. Union, 79, 579, 1998.

    Article  Google Scholar 

  • Yamazaki, D., T. Inoue, M. Okamoto, and T. Irifune, Grain growth kinetics of ringwoodite and its implication for rheology of the subducting slab, Earth Planet. Sci. Lett., 236, 871–881, 2005.

    Article  Google Scholar 

  • Yoshioka, S., R. Daessler, and D. A. Yuen, Stress fields associated with metastable phase transitions in descending slabs and deep-focus earthquakes, Phys. Earth Planet. Inter., 104, 345–361, 1997.

    Article  Google Scholar 

  • Zhong, S. and M. Gurnis, Mantle convection with plates and mobile, faulted plate margins, Science, 267, 838–843, 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michio Tagawa.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Tagawa, M., Nakakuki, T. & Tajima, F. Dynamical modeling of trench retreat driven by the slab interaction with the mantle transition zone. Earth Planet Sp 59, 65–74 (2007). https://doi.org/10.1186/BF03352678

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352678

Key words

  • Subduction
  • tensional strength
  • trench retreat
  • grain-size reduction