Skip to main content

Advertisement

Dynamical modeling of trench retreat driven by the slab interaction with the mantle transition zone

Article metrics

  • 433 Accesses

  • 35 Citations

Abstract

We present the 2-D self-consistent dynamical model of interactions of a subducting slab with the 410-km and 660-km phase boundaries to further our understanding of the relation between the slab stagnation/penetration and the trench migration. Our model takes into account freely-movable plate boundaries and the difference between tensional and compressional yield strengths in the lithosphere. For the case in which the tensional strength is weaker than the compressional one, the negative buoyancy of the subducting slab produces extension of the overriding lithosphere and, accordingly, the trench retreats. Interactions with the 410-km and 660-km phasetransition boundaries further promote the trench retreat, and the dip angle of the slab is substantially decreased. This enhances the resistance of the 660-km phase boundary against the slab penetration. Slab weakening caused by the grain-size reduction in the transition zone may result in a horizontally-lying slab and trench retreat.

References

  1. Akaogi, M. and E. Ito, Refinement of enthalpy measurement of MgSiO3 perovskite and negative pressure-temperature slopes for perovskite-forming reactions, Geophys. Res. Lett., 20, 1839–1842, 1993.

  2. Akaogi, M., E. Ito, and A. Navrotsky, Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application, J. Geophys. Res., 94, 15671–15685, 1989.

  3. Brace, W. F. and D. L. Kohlstedt, Limits on lithospheric stress imposed by laboratory experiments, J. Geophys. Res., 85, 6248–6252, 1980.

  4. Byerlee, J. D., Friction of rocks, Pure Appl. Geophys., 116, 615–626, 1978.

  5. Christensen, U. R., Convection with pressure- and temperature-dependent non-Newtonian rheology, Geophys. J. R. Astron. Soc., 77, 343–384, 1984.

  6. Christensen, U. R., The influence of trench migration on slab penetration into the lower mantle, Earth Planet. Sci. Lett., 140, 27–39, 1996.

  7. Christensen, U. R. and D. A. Yuen, The interaction of a subducting lithospheric slab with a chemical or phase boundary, J. Geophys. Res., 89, 4389–4402, 1984.

  8. Christensen, U. R. and D. A. Yuen, Layered convection induced by phase transitions, J. Geophys. Res., 90, 10291–10300, 1985.

  9. Čížková, H., J. van Hunen, A. P. van den Berg, and N. J. Vlaar, The influence of rheological weakening and yield stress on the interaction of slabs with the 670 km discontinuity, Earth Planet. Sci. Lett., 199, 447–457, 2002.

  10. Dziewonski, A. M. and D. L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297–356, 1981.

  11. Enns, A., T. W. Becker, and H. Schmeling, The dynamics of subduction and trench migration for viscosity stratification, Geophys. J. Int., 160, 761–775, 2005. Fei, Y., J. Van Orman, J. Li, W. van Westrenen, C. Sanloup, W. Minarik, K. K. Hirose, T. Komabayashi, M. Walter, and K. Funakoshi, Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications, J. Geophys. Res.109, B02305, doi:10.1029/2003JB002562, 2004.

  12. Flanagan, M. P. and P. M. Shearer, Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors, J. Geophys. Res., 103, 2673–2692, 1998.

  13. Forsyth, D. W. and S. Uyeda, On the relative importance of the driving forces of plate motion, Geophys. J. R. Astron. Soc., 43, 163–200, 1975.

  14. Frohlich, C., The nature of deep-focus earthquakes, Ann. Rev. Earth Planet. Sci., 17, 227–254, 1989.

  15. Fukao, Y., S. Widiyantoro, and M. Obayashi, Stagnant slabs in the upper and lower mantle transition region, Rev. Geophys., 39, 291–323, 2001.

  16. Fukao, Y., M. Obayashi, H. Inoue, and M. Nenbai, Subducting slabs stagnant in the mantle transition zone, J. Geophys. Res., 97, 4809–4822, 1992.

  17. Funiciello, F., C. Faccenna, D. Giardini, and K. Regenauer-Lieb, Dynamics of retreating slabs: 2. Insights from three-dimensional laboratory experiments, J. Geophys. Res., 108, 2207, doi:10.1029/2001JB000896, 2003.

  18. Garfunkel, Z., C. A. Anderson, and G. Schubert, Mantle circulation and the lateral migration of subducted slabs, J. Geophys. Res., 91, 7205–7223, 1986.

  19. Gordon, R. G., Diffuse oceanic plate boundaries: Strain rates, vertically averaged rheology, and comparisons with narrow plate boundaries and stable plate interiors, in The History and Dynamics of Global Plate Motions, edited by M. A. Richards, R. Gordon, and R. van der Hilst, Geophys. Monograph Series 121, pp. 143–159, Am. Geophys. Union, Washington D.C., 2000.

  20. Gurnis, M. and B. H. Hager, Controls of the structure of subducted slabs, Nature, 335, 317–321, 1988.

  21. Gurnis, M., J. Ritsema, H.-J. van Heijst, and S. Zhong, Tonga slab deformation: The influence of a lower mantle upwelling on a slab in a young subduction zone, Geophys. Res. Lett., 27, 2373–2376, 2000.

  22. Heuret, A. and S. Lallemand, Plate motions, slab dynamics and back-arc deformation, Phys. Earth Planet. Inter., 149, 31–51, 2005.

  23. Isacks, B. and P. Molnar, Distribution of stresses in the descending lithosphere from a global survey of focal-mechanism solutions of mantle earthquakes, Rev. Geophys., 9, 103–174, 1971.

  24. Ito, E. and H. Sato, Aseismicity in the lower mantle by superplasticity of the descending slab, Nature, 351, 140–141, 1991.

  25. Kameyama, M., Conditions for plate tectonics inferred from numerical experiments of mantle convection and shear zone formation, Ph.D. Thesis, University of Tokyo, 1998.

  26. Karato, S. and P. Wu, Rheology of the upper mantle: A synthesis, Science, 260, 771–778, 1993.

  27. Karato, S., S. Zhang, and H.-R. Wenk, Superplasticity in the Earth’s lower mantle: Evidence from seismic anisotropy and rock physics, Science, 270, 458–461, 1995.

  28. Katsura, T. and E. Ito, The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel, J. Geophys. Res., 94, 15663–15670, 1989.

  29. Katsura, T., H. Yamada, T. Shinmei, A. Kubo, S. Ono, M. Kanzaki, A. Yoneda, M. J. Walter, E. Ito, S. Urakawa, K. Funakoshi, and W. Utsumi, Post-spinel transition in Mg2SiO4 determined by high P-T in situ X-ray diffractometry, Phys. Earth Planet. Inter., 136, 11–24, 2003.

  30. Kincaid, C. and P. Olson, An experimental study of subduction and slab migration, J. Geophys. Res., 92, 13832–13840, 1987.

  31. Kirby, S. H., Tectonic stresses in the lithosphere: Constraints provided by the experimental deformation of rocks, J. Geophys. Res., 85, 6353–6363, 1980.

  32. Kohlstedt, D. L., B. Evans, and S. J. Mackwell, Strength of the lithosphere: Constraints imposed by laboratory experiments, J. Geophys. Res., 100, 17587–17602, 1995.

  33. Milne, G. A., J. X. Mitrovica, and J. L. Davis, Near-field hydro-isostasy: The implementation of a revised sea-level equation, Geophys. J. Int., 139, 464–482, 1999.

  34. Molnar, P. and T. Atwater, Interarc spreading and Cordilleran tectonics as alternates related to the age of subducted oceanic lithosphere, Earth Planet. Sci. Lett., 41, 330–340, 1978.

  35. Nakakuki, T., H. Sato, and H. Fujimoto, Interaction of the upwelling plume with the phase and chemical boundary at the 670 km discontinuity: Effects of temperature-dependent viscosity, Earth Planet. Sci. Lett., 121, 369–384, 1994.

  36. Okuno, J. and M. Nakada, Effects of water load on geophysical signals due to glacial rebound and implications for mantle viscosity, Earth Planets Space, 53, 1121–1135, 2001.

  37. Ranalli, G., Rheology of the Earth, 366 pp., Allen and Unwin, Boston, 1987.

  38. Riedel, M. R. and S. Karato, Grain-size evolution in subducted oceanic lithosphere associated with the olivine-spinel transformation and its effects on rheology, Earth Planet. Sci. Lett., 148, 27–43, 1997.

  39. Rubie, D. C., The olivine→spinel transformation and the rheology of subducting lithosphere, Nature, 308, 505–508, 1984.

  40. Schmeling, H., R. Monz, and D. C. Rubie, The influence of olivine metastability on the dynamics of subduction, Earth Planet. Sci. Lett., 165, 55–66, 1999.

  41. Scholz, C. H., The Mechanics of Earthquakes and Faulting, 439 pp., Cambridge University Press, New York, 1990.

  42. Seno, T. and Y. Yamanaka, Arc stresses determined by slabs: Implications au]for mechanisms of back-arc spreading, Geophys. Res. Lett., 25, 3227–3230, 1998.

  43. Seno, T. and M. Yoshida, Where and why do large shallow intraslab earthquakes occur?, Phys. Earth Planet. Inter., 141, 183–206, 2004.

  44. Sleep, N. H., Evolution of the mode of convection within terrestrial planets, J. Geophys. Res., 105, 17563–17578, 2000.

  45. Tajima, F. and S. P. Grand, Evidence of high velocity anomalies in the transition zone associated with southern Kurile subduction zone, Geophys. Res. Lett., 22, 3139–3142, 1995.

  46. Tajima, F. and S. P. Grand, Variation of transition zone high-velocity anomalies and depression of 660 km discontinuity associated with subduction zones from the southern Kuriles to Izu-Bonin and Ryukyu, J. Geophys. Res., 103, 15015–15036, 1998.

  47. Takewaki, H., A. Nishiguchi, and T. Yabe, Cubic interpolated pseudo-particle method (CIP) for solving hyperbolic-type equations, J. Comp. Phys., 61, 261–268, 1985.

  48. Tonegawa, T., K. Hirahara, and T. Shibutani, Detailed structure of the upper mantle discontinuities around the Japan subduction zone imaged by receiver function analyses, Earth Planets Space, 57, 5–14, 2005.

  49. Turcotte, D. L. and G. Schubert, Geodynamics: Applications of Continuum Physics to Geological Problems, pp. 450, John Wiley and Sons, New York, 1982.

  50. van der Hilst, R., Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench, Nature, 374, 154–157, 1995.

  51. van der Hilst, R. and T. Seno, Effects of relative plate motion on the deep structure and penetration depth of slabs below the Izu-Bonin and Mariana island arcs, Earth Planet. Sci. Lett., 120, 395–407, 1993.

  52. van der Hilst, R., R. Engdahl, W. Spakman, and G. Nolet, Tomographic imaging of subducted lithosphere below northwest Pacific island arcs, Nature, 353, 37–43, 1991.

  53. Wessel, P. and W. H. F. Smith, New, improved version of the Generic Mapping Tools released, EOS Trans. Am. Geophys. Union, 79, 579, 1998.

  54. Yamazaki, D., T. Inoue, M. Okamoto, and T. Irifune, Grain growth kinetics of ringwoodite and its implication for rheology of the subducting slab, Earth Planet. Sci. Lett., 236, 871–881, 2005.

  55. Yoshioka, S., R. Daessler, and D. A. Yuen, Stress fields associated with metastable phase transitions in descending slabs and deep-focus earthquakes, Phys. Earth Planet. Inter., 104, 345–361, 1997.

  56. Zhong, S. and M. Gurnis, Mantle convection with plates and mobile, faulted plate margins, Science, 267, 838–843, 1995.

Download references

Author information

Correspondence to Michio Tagawa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tagawa, M., Nakakuki, T. & Tajima, F. Dynamical modeling of trench retreat driven by the slab interaction with the mantle transition zone. Earth Planet Sp 59, 65–74 (2007) doi:10.1186/BF03352678

Download citation

Key words

  • Subduction
  • tensional strength
  • trench retreat
  • grain-size reduction