Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California


Using global positioning system (GPS) data taken from 350 dual-frequency GPS receivers in Southern California in 2002, we investigated two-dimensional maps of total electron content (TEC) perturbations with a time resolution of 30 s and a spatial resolution of 0.15°×0.15° in longitude and latitude to reveal statistical characteristics of medium-scale traveling ionospheric disturbances (MSTIDs). We found that MSTIDs can be categorized into three types. One type is daytime MSTIDs, which frequently occur in winter and equinoxes. Since most of the daytime MSTIDs propagated southeastward, we speculate that the daytime MSTIDs could be caused by atmospheric gravity waves in the thermosphere. A second type is nighttime MSTIDs, which frequently occur in summer. Nighttime MSTIDs propagate southwestward. This propagation direction is consistent with the idea that polarization electric fields could play an important role in generating nighttime MSTIDs. The third is dusk MSTIDs, which frequently occur in summer and propagate northwestward. Dusk MSTIDs could be caused by gravity waves originating from the sunset terminator because they have wavefronts almost parallel to the sunset terminator.


  1. Afraimovich, E. L., O. N. Boitman, E. I. Zhovty, A. D. Kalikhman, and T. G. Porog, Dynamics and anisotropy of traveling ionospheric disturbances as deduced from transionospheric sounding data, Radio. Sci., 34, 477–487, 1999.

  2. Afraimovich, E. L., N. P. Perevalova, and S. V. Voyeikov, Traveling wave packets of total electron content disturbances as deduced from global GPS network data, J. Atmos. Solar-Terr. Phys., 65, 1245–1262, 2003.

  3. Afraimovich, E. L., E. I. Astafieva, E. I. Astafieva, M. B. Gokhberg, V. M. Lapshin, V. E. Permyakova, G. M. Steblov, and S. L. Shalimov, Variations of the total electron content in the ionosphere from GPS data recorded during the Hector Mine earthquake of October 16, 1999, California. Russ. J. Earth Sci., 6, 339–354, 2004.

  4. Bowman, G. G., Upper atmosphere neutral-particle density variations compared with spread-F occurrence rates at locations around the world, Ann. Geophys., 10, 676–682, 1992.

  5. Bretherton, F. P., The propagation of groups of gravity waves in a shear flow, Quant. J. R. Meteorol. Soc., 92, 466–480, 1967.

  6. Calais, E., J. S. Haase, and J. B. Minster, Detection of ionospheric perturbations using a dense GPS array in Southern California, Geophys. Res. Lett., 30, 1–4, 2003.

  7. Cowling, D. H., H. D. Webb, and K. C. Yeh, Group rays of internal gravity waves in a wind stratified atmosphere, J. Geophys. Res., 76, 213–220, 1971.

  8. Evans, J. V., J. M. Holt, and R. H. Wand, A differential-Doppler study of traveling ionospheric disturbances from Millstone Hill, Radio Sci., 18, 435–451, 1983.

  9. Fukao, S., Y. Yamamoto, W. L. Oliver, T. Takami, M. D. Yamanaka, M. Yamamoto, T. Nakamura, and T. Tsuda, Middle and upper atmosphere radar observations of ionospheric horizontal gradients produced by gravity waves, J. Geophys. Res., 98, 9443–9451, 1991.

  10. Garcia, F. J., M. C. Kelley, J. J. Makela, and C. S. Huang, Airglow observations of mesoscale low-velocity traveling traveling ionospheric disturbances at midlatitudes, J. Geophys. Res., 105, 18,407–18,415, 2000.

  11. Galushko, V. G., V. V. Paznukhov, Y. M. Yampolski, and J. C. Foster, Incoherent scatter radar observations of AGW/TID events generated by the moving solar terminator, Ann. Geophys., 16, 821–827, 1998.

  12. Hamza, A. M., Perkins instability revisited, J. Geophys. Res., 104, 22,567–22,575, 1999.

  13. Hawarey, M., Traveling ionospheric disturbance over California mid 2000, Nonlinear Proc. Geophys., 13, 1–7, 2006.

  14. Hedin, A. E., E. L. Fleming, A. H. Manson, F. J. Scmidlin, S. K. Avery, R. R. Clark, S. J. Franke, G. J. Fraser, T. Tsunda, F. Vial, and R. A. Vincent, Empirical wind model for the upper, middle, and lower atmosphere, J. Atmos. Terr. Phys., 58, 1421–1447, 1996.

  15. Hines, C. O., Internal atmospheric gravity waves at ionospheric heights, Can. J. Phys., 38, 1441–1481, 1960.

  16. Hines, C. O., An effect of ohmic losses in upper atmospheric gravity waves, J. Atmos. Terr. Phys., 30, 851–856, 1968.

  17. Hooke, W. H., Ionospheric irregularities produced by internal atmospheric gravity waves, J. Atmos. Terr. Phys., 30, 795–823, 1968.

  18. Hooke, W. H., The ionospheric response to internal gravity waves 1. The F region response, J. Geophys. Res., 75, 5535–5544, 1970.

  19. Hunsucker, R., Atmospheric gravity waves generated in the highlatitude ionosphere: a review, Rev. Geophys. Space Phys., 20, 293–315, 1982.

  20. Jacobson, A. R., R. C. Carlos, R. S. Massey, and G. Wu, Observations of traveling ionospheric disturbances with a satellite-beacon radio interferometer: Seasonal and local time behavior, J. Geophys. Res., 100, 1653–1665, 1995.

  21. Kalikhman, A. D., Medium-scale traveling ionospheric disturbances and thermospheric winds inthe F-region, J. Atmos. Soler-Terr. Phys., 42, 697–703, 1980.

  22. Kelley, M. C. and J. J. Makela, Resolution of the discrepancy between experiment and theory of midlatitude F-region structures, Geophys. Res. Lett., 28, 2589–2592, 2001.

  23. Kelley, M. C. and C. A. Miller, Electrodynamics of midlatitude spread F, 3. Electrohydrodynamic waves- A new look at the role of electric fields in thermospheric wave dynamics, J. Geophys. Res., 102, 11,539–11,547, 1997.

  24. Kirchengast, G., K. Hocke, and K. Schlegel, The gravity wave-TID relationship: insight via theoretical model-EISCAT data comparison, J. Atmos. Terr. Phys., 58, 233–243, 1996.

  25. Kotake, N., Y. Otsuka, T. Tsugawa, T. Ogawa, and A. Saito, Climatolog-ical study of GPS total electron content variations caused by medium-scale traveling ionospheric disturbances, J. Geophys. Res., 111, A04306, doi:10.1029/2005JA011418, 2006.

  26. Kubota, M., K. Shiokawa, M. K. Ejiri, Y. Otsuka, T. Ogawa, T. Sakanoi, H. Fukunishi, M. Yamamoto, S. Fukao, and A. Saito, Traveling ionospheric disturbances observed in the OI 630-nm nightglow images over Japan by using a multi-point imager network during the FRONT campaign, Geophys. Res. Lett., 24, 4037–4040, 2000.

  27. Liu, C. H. and K. C. Yeh, Effect of ion drag on propagation of acoustic-gravity waves in the atmospheric F region, J. Geophys. Res., 74, 2248–2255, 1969.

  28. Mannucci, A. J., B. A. Iijima, U. J. Lindqwister, X. Pi, L. Sparks, and B. D. Wilson, 25. GPS and Ionosphere, in Review of Radio Science 1996–1999, edited by W. R. Stone, 625–665, URSI, 1999.

  29. Mendillo, M., J. Baumgardner, D. Nottingham, J. Aarons, B. Reinisch, J. Scali, and M. Kelley, Investigations of thermospheric-ionospheric dynamics with 6300-Å images from the Arecibo Observatory, J. Geophys. Res., 102, 7331–7343, 1997.

  30. Mercier, C., Some characteristics of atmospheric gravity waves observed by radio-interferometry, Ann. Geophys., 14, 42–58, 1996.

  31. Miller, C. A., W. E. Swartz, M. C. Kelley, M. Mendillo, D. Nottingham, J. Scali, and B. Reinisch, Electrodynamics of midlatitude spread F, 1. Observations of unstable, gravity wave-induced ionospheric electric fields at tropical latitudes, J. Geophys. Res., 102, 11,521–11,532, 1997.

  32. Morgan, M. G., C. H. J. Calderon, and K. A. Ballard, Techniques for the study of TID’s with multi-station rapid-run ionosondes, Radio Sci., 13, 729–741, 1978.

  33. Oliver, W. L., Y Otsuka, M. Sato, T. Takami, and S. Fukao, A climatology of F region gravity wave propagation over the middle and upper atmosphere radar, J. Geophys. Res., 102, 14,499–14,512, 1997.

  34. Perkins, F., Spread F and ionospheric currents, J. Geophys. Res., 78, 218–226, 1973.

  35. Rishbeth, H., The F-layer dynamo, Planet. Space Sci., 19, 263–267, 1971.

  36. Saito, A., S. Miyazaki, and S. Fukao, High resolution mapping of TEC perturbations with the GSI GPS network over Japan, Geophys. Res. Lett., 25, 3079–3082, 1998.

  37. Shiokawa, K., C. Ihara, Y Otsuka, and T. Ogawa, Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images, J. Geophys. Res., 108, 1052, doi:10.1029/2002JA009491, 2003a.

  38. Shiokawa, K., C. Ihara, Y Otsuka, and T. Ogawa, Ground and satellite observations of nighttime medium-scale traveling ionospheric disturbance at midlatitude, J. Geophys. Res., 108, 1145, doi:10.1029/2002JA009639, 2003b.

  39. Tsugawa, T., A. Saito, and Y Otsuka, A statistical study of large-scale traveling ionospheric disturbances using the GPS network in Japan, J. Geophys. Res., 109, 6302, doi:10.1029/2003JA010302, 2004.

  40. Waldock, J. A. and T. B. Jones, The effects of neutral winds on the propagation of medium-scale atmospheric gravity wave at mid-latitudes, J. Atmos. Terr. Phys., 46, 217–231, 1984.

  41. Waldock, J. A. and T. B. Jones, HF Doppler observations of medium-scale traveling ionospheric disturbances observed at mid-latitudes, J. Atmos. Terr. Phys., 48, 245–260, 1986.

  42. Waldock, J. A. and T. B. Jones, Source regions of medium scale traveling ionospheric disturbances observed at mid-latitudes, J. Atmos. Terr. Phys., 49, 105–114, 1987.

Download references

Author information



Corresponding author

Correspondence to Nobuki Kotake.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kotake, N., Otsuka, Y., Ogawa, T. et al. Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California. Earth Planet Sp 59, 95–102 (2007).

Download citation

Key words

  • mid-latitude ionosphere
  • GPS
  • total electron contents